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Abstract

The problem of field estimation, or finding the spatial distribution of a resource in

space, has many applications in problems of robotic search. This thesis approaches

the problem in the framework of a Gaussian Multi-Armed Bandit (MAB) task, a

problem in which an agent must learn about an unknown environment while max-

imizing expected reward. The arms correspond to discretized points in space, and

the smoothness of the field is modeled as spatial correlation between the arms. Up-

per Confidence Limit (UCL), an algorithm developed by Reverdy et al. in 2014 for

Gaussian MAB problems with correlated arms and prior knowledge, is then applied

to this problem.

The smoothness of the field is measured by a parameter known as the length

scale. In real world applications, the agent can only have an estimate of this length

scale. This thesis explores the performance of UCL with correlation in comparison

to other algorithms when the estimate of the length scale is correct. The effect of

overestimates and underestimates in the length scale is then explored for fields of

different smoothness. The search task is finally implemented in a testbed with a

robot, giving additional metrics of performance.

The simulations showed that knowledge of the spatial correlation of the arms can

result in improvements in performance using UCL when compared to other algorithms

that do not account for correlation. In addition, it is shown that, in the cases studied,

best performance is not actually obtained for the correct length scale estimate, but

for some particular overestimate. This effect must be studied further, but the results

suggest that an agent performing this search should use an overestimate and not an

underestimate of the length scale that describes the field, provided this overestimate

is not grossly inaccurate.
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Chapter 1

Introduction

The field of robotic search has been increasingly explored in recent publications.

One particular problem is that of estimating a field, or building an estimate of a

distributed parameter as a function of time and location [8]. Applications include

odor plume detection [7] and mapping of forest fires [9]. Another application is the

problem of finding the concentration of dissolved oxygen or spilled oil in the ocean.

In the latter case, efforts could then be focused on removing oil from places with high

concentration.

A robot performing this search task should move around the space enough to

guarantee, at least probabilistically, that it is not ignoring a patch with a high resource

concentration. At the same time, it would be desired that the robot focus most of

its attention to parts of the field with high concentration of the resource to take

more measurements and improve its knowledge of the distribution in those areas. A

fundamental problem is then finding the optimal balance between exploration and

exploitation [11].

It is possible to approach the problem of search in a resource distribution using a

Multi-armed Bandit (MAB) framework. In MAB problems, explained more in depth

in Chapter 2, an agent is presented with a number of options, each of which gives a

reward according to a probability distribution. The goal is to maximize the expected

reward in this uncertain environment. Applied to the problem of field estimation,

the space is discretized, and each patch corresponds to an arm in an MAB. The

uncertainty in measurements is simulated as the sampling process having a Gaussian

distribution. This results in a Gaussian MAB.

Deterministic sequencing algorithms for MABs have been proposed, which consist

of setting alternating blocks of exploration and exploitation. In the exploration phase,
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the arms are played at random, while in the exploitation phase the arm with the

highest expected reward is played [12]. The approach used in this project focuses on

stationary distributions and takes advantage of the spatial correlation of the rewards,

using the Upper Confidence Limit (UCL) algorithm developed by Reverdy et al. [11].

Reverdy et al. sought to incorporate prior knowledge of the field into an MAB

search. They began by studying the Upper Confidence Bound (UCB) algorithm

developed by Kaufmann et al. [4], which approaches the MAB problem with no

prior knowledge. This algorithm was proven by Kaufmann et al. to achieve the

best possible performance given by the bound found by Lai and Robbins [6], within a

constant factor. They then treated the problem from a Bayesian perspective following

an approach by Kaufmann et al. to allow the incorporation of prior beliefs on the

arms [4], and obtained improvements in performance. Reverdy et al. then extended

the algorithm for the case of correlated arms [11].

In the problem of field estimation, the smoothness of the field can be simulated

by generating a correlation structure that represents the correlation of any two arms

based on the distance between them. This smoothness is measured by the length

scale, which is a metric of how spatially correlated the arms are. A field based on

this length scale can then be generated using the correlation structure. Afterwards, a

robot can be programmed with the UCL algorithm to determine what points in space

to visit and take samples from.

This process enables the agent to perform better than agents that have no knowl-

edge of the spatial correlation of the arms. It is well understood that a knowledge of

this length scale allows the agent to perform better: sampling an arm gives the agent

information about the arms around it, reducing the need for exploration and allowing

faster convergence towards an optimal arm. However, in the case of robotic search

in the ocean, the length scale of the field cannot really be known exactly, since one

would likely only have an approximate model that determines a theoretical length

scale. An important question is then how making an incorrect estimate of the length

scale can impact performance. This issue has not been studied in depth before.

The purpose of this thesis is to evaluate and compare the performance of UCL

with correlation as the estimate of the length scale is varied while the length scale

associated with the field is kept constant. Chapter 2 gives a review of MAB problems

and describes the setup used to perform the robotic search. Chapter 3 describes

implementation issues: the control scheme used for the vehicles and the generation of a

correlated field. Chapter 4 presents a simulation study on a correlated field comparing

the performance of different MAB algorithms against UCL with correlation, and a

2



study evaluating the performance of UCL with correlation when the estimate of the

length scale is incorrect. Finally, Chapter 5 presents an experimental study of this

last simulation highlighting implementation issues.

3



Chapter 2

Background

2.1 MAB Problems

This section follows the review of MAB problems given by Reverdy et al. [11].

In a Multi-Armed Bandit, an agent is presented with N options, usually called

“arms”. Each arm provides rewards according to a distribution, which is not known

to the agent. The problem is for the agent to choose a sequence of arms to maximize

the cumulative expected reward, which requires a balance of exploration (choosing

new arms to gather information about their rewards) and exploitation (choosing arms

that have been known to give high rewards to maximize reward).

In this section, we follow primarily the notation given by Reverdy et al. [11].

Given a time horizon T ∈ N, for time t ∈ {1, ..., T}, the agent obtains a reward

rt ∈ R by playing arm it. Each reward from arm i ∈ {1, ..., N} is “sampled from a

stationary distribution pi and has an unknown mean mi ∈ R”. The agent’s “objective
is to maximize the cumulative expected reward

∑T
t=1mit by selecting a sequence of

arms {it}t∈{1,...,T}.” By defining m∗ := max{mi|i ∈ {1, ..., N}}, and Rt = m∗ − mit

or the “expected regret at time t”, this objective can be formulated equivalently as

minimizing the cumulative expected regret:

T∑
t=1

Rt = Tm∗ −
N∑
i=1

miE[n
T
i ] =

N∑
i=1

∆iE[n
T
i ]. (2.1.1)

Here, nT
i is the number of times that arm i is chosen up to time T , and ∆i :=

m∗ −mi is the “expected regret due to picking arm i instead of” the optimal arm.

Thus, at any given time t, exploration corresponds to choosing the arm that “is

4



estimated to have the highest mean at time t”, and exploration refers to choosing

“any other arm”. The problem becomes a matter of finding the right balance of

exploration and exploitation: too much exploitation might result in a suboptimal

arm being played an excessive number of times, while too much exploration results in

a higher number of suboptimal arm choices. Enough exploration is needed “to learn

which arm is most rewarding” to then exploit this arm.

Lai and Robbins showed that the expected number of times that a suboptimal

arm is chosen has a logarithmic lower bound in terms of time, which sets a logarithmic

lower bound for the cumulative expected regret as well [6].

In the MAB problems considered here, the arms have a Gaussian distribution with

mean mi and variance σ2
s . This is known as the Gaussian MAB problem. The means

are unknown to the agent, but knowledge of the variance is assumed, by previous

measurements or knowledge about sensor error. In this case, Reverdy et al. [11]

showed, using the bound by Lai and Robbins [6], that:

E[nT
i ] ≥

(
2σ2

s

∆2
i

+ o(1)

)
log T. (2.1.2)

This means that higher values of σs result in higher regret rates, given that the

samples obtained are not as significant, while higher values of ∆i result in lower regret

rates, since the arms are easier to distinguish [11].

2.1.1 The UCB algorithm

The upper-confidence-bound algorithm (UCB), developed by Auer et al. [2] achieves

logarithmic regret without any prior knowledge of the rewards. In the initialization

phase, each arm is played once. Next, at each following time step, a heuristic value

Qt
i is calculated for each arm i, which gives an upper bound on the expected reward

of the arm. The arm chosen in time step t is whichever has the maximum value of

Qt
i. The heuristic value is calculated as follows:

Qt
i = m̄t

i + Ct
i . (2.1.3)

Here m̄t
i is the empirical mean of the arm, and Ct

i is a “measure of the uncertainty

in the reward of arm i at time t. In the specific variant used in this project, we use:

Ct
i = σs

√
2 log t

nt
i

(2.1.4)
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where nt
i is the number of times that arm i has been played at time t. This has the

effect of balancing exploration and exploitation: if an arm has a high mean and a

high standard deviation, it is more likely to be chosen, but if it is chosen very often,

the term Ct
i decreases, and other arms will likely be chosen instead. This variant of

the algorithm for a Gaussian MAB was termed UCB1-normal by the authors, and

achieves logarithmic regret. However, the general UCB1 algorithm they developed

achieves logarithmic regret with a larger constant than the optimal one.

2.1.2 Deterministic UCL algorithm with uncorrelated priors

Kaufmann et al. [4] treated the MAB problem from a Bayesian perspective, which al-

lows the incorporation of priors into the algorithm. They proposed using the quantile

function of the posterior reward distribution as the heuristic function Qt
i.

As explained by Reverdy et al. [11], for a random variable X ∈ R ∪ {±∞} with

a probability distribution function f(x), the cumulative distribution function (cdf)

of X is defined as F (X) = P[X ≤ x]. The quantile function F−1(p) is then defined

with domain [0, 1] and codomain R ∪ {±∞}, such that:

P(X ≤ F−1(p)) = p. (2.1.5)

Thus, F−1(p) “is an upper confidence bound, i.e. an upper bound that holds

with probability, or confidence level, p” [11]. Given a distribution pi(r) with cdf F of

option i, we can take Qi = F−1(p) to find an upper bound that holds with confidence

p. Choosing a high p results in a bound that holds with high probability.

Kaufmann et al. [4] chose p = 1 − αt, where αt = 1/(t(log T )c) so that αt is of

order 1/t. This has the effect of generating better bounds as time advances, so that

the agent is more likely to choose the optimal arm. This algorithm was named by

the authors as Bayes-UCB.

Based on this Bayesian algorithm, Reverdy et al. [11] developed the upper-

credible-limit (UCL) algorithm for the MAB problem. We will focus here on the

case of a deterministic decision maker (the authors also developed a stochastic ver-

sion of the algorithm). The prior on arm i is a random Gaussian with mean µ0
i and

variance σ2
0. Moreover, “conditioned on the number of visits nt

i to arm i and the em-

pirical mean m̄t
i, the mean reward at arm i at time t is a Gaussian random variable”.

[11] This variable has mean and variance:
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µt
i :=

δ2µ0
i + nt

im̄
t
i

δ2 + nt
i

(2.1.6)

(σt
i)

2 :=
σ2
s

δ2 + nt
i

(2.1.7)

where δ2 = σ2
s/σ

2
0. At each time step t, the selects the arm i with maximum:

Qt
i = µt

i + σt
iΦ

−1(1− 1/(Kt)). (2.1.8)

K is a tunable parameter, chosen as
√
2πe by the authors. In addition Φ−1 :

(0, 1) → R is the inverse cdf of the standard Gaussian variable.

Reverdy et al. [11] showed that this algorithm achieves, in general, logarith-

mic regret. The regret growth rate is similar to that of the UCB algorithm for

uninformative priors (large σ2
0). For informative priors (small σ2

0), the performance

depends on the quality of those priors. The authors define a metric on the priors

ζ := max{|mi−µ0
i |/σ0|i ∈ {1, ..., N}}, with good priors corresponding to small values

of ζ, and bad ones corresponding to big values of ζ. Good priors achieve logarithmic

regret, while bad priors can result in super-logarithmic regret growth.

2.1.3 Deterministic UCL algorithm with correlated priors

Reverdy et al. [11] extended this UCL algorithm for correlated priors. In this case, the

priors are in the form of estimates on the means µ0 ∈ RN×1 and a correlation matrix

Σ0 ∈ RN×N (which must be positive-definite). Defining ϕt ∈ RN×1 for t ∈ {1, ..., T},
such that (ϕt)(k,1) = 1 if k = it and 0 otherwise, where it is the arm chosen at time t.

The belief state (µt,Σt) is then updated as follows [5]:

q =
rtϕt

σ2
s

+ Λt−1µt−1

Λt =
ϕtϕ

T
t

σ2
s

+ Λt−1, Σt = Λ−1
t

µt = Σtq. (2.1.9)

These equations reduce to Equations (2.1.6) and (2.1.7) in the case of uncorrelated

priors, when Σ0 = σ2
0IN . Once the belief state has been updated, Equation (2.1.8) is

used to choose an arm, as in the uncorrelated case.
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In this document, for simplicity, UCL with correlation will often be referred to as

“correlated UCL”, and UCL without correlation as “uncorrelated UCL”.

2.2 Vehicles and Testbed

The underwater vehicles and testbed used in this project were developed by the

Dynamical Control Systems Laboratory at Princeton University under the direction

of Prof. Naomi Leonard.

Figure 2.1 shows a picture of one of the underwater vehicles used in this project.

The robots have a body based on a symmetric airfoil extruded in the vertical direction

and made out of a buoyant spongy material and plastic. The body is stabilized by

ballast in a keel beneath it, the weight of which can be adjusted to allow the robot to

stay at a constant height when submerged. Three servos allow the body to move: one

which controls a vertical propeller, and two which control a tail with a propeller. The

vertical propeller is placed normal to the top surface of the body of the robot. The

tail of the robot consists mostly of a servo with a propeller attached. Another servo

controls the angle that this servo makes with the robot. The tail is placed behind the

robot, at the narrow end of the airfoil, parallel to the horizontal plane. At the neutral

position, the propeller lines with the plane of symmetry of the robot. When the tail

is rotated, it does so by a vertical axis on this same plane of symmetry, allowing the

robot to turn left or right.

An Arduino, which is a single-board microcontroller, is placed inside a sealed

compartment inside the robot. It is connected to a pressure sensor and controls the

servos. A tether connects a main computer, from which control schemes are executed

with the Arduino.

Figure 2.2 shows the laboratory setup. A water tank, 2.4 m high and with a radius

of 3.2 m serves as the testbed for the robots. Four cameras provide a view of the top

of the tank. A visual recognition system is used to identify the horizontal position

of the robot. The vehicle’s top surface and propeller have a bright magenta color for

this purpose. To correct for the effect of parallax and water refraction, the reading

from the pressure sensor is used to determine the height of the robot with respect

to the cameras. For this purpose, the surface of the tank is kept at a fairly constant

height throughout the experiments by means of a visual reference in the tank, and

the pressure at the top and at the bottom of the tank are calibrated whenever the

robot is first ran during a day.

The communication between the main computer, the cameras, and the Arduino is
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handled by Rosserial, a protocol that allows communication between multiple devices.

Control is executed from Matlab and through this system.

Figure 2.1: Underwater vehicle for use in the testbed. Picture taken by Peter Land-
gren and used with his permission.

Figure 2.2: Laboratory testbed with water tank and robots. Picture taken by Peter
Landgren and used with his permission.
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Chapter 3

Implementation

3.1 Vehicle Control

A control scheme developed by Peter Landgren was used to make the robot reach a

desired location in the tank.

The main challenge with the control of the robot is that the tether is a source

of nonlinearity that cannot be easily modeled. The tether pulls the robot because

of its weight and friction with the bottom of the tank. This force depends on the

tether’s position in the bottom of the tank, and is thus also dependent on the current

and past trajectory of the robot. To counteract the variable pull of the tether, a PI

control is an appropriate choice. It eliminates the possibility of a steady state error

[1], and can reactively correct the pulling force of the tether.

Consider the problem of making the robot track a reference height. Assuming

the robot is neutrally buoyant, that the only actuator that can affect the vertical

dynamics is the vertical propeller, and that no other forces act on the robot aside

from the tether pull, then the dynamics are given by:

mrobz̈ = FT − bż + du (3.1.1)

where z is the vertical position of the robot in the tank measured from the bottom, u

is the input into the motor, mrob is the mass of the robot, FT is the vertical component

of the force exerted by the tether as a function of time, b is a damping coefficient

measuring the drag of the robot in the water approximated as a constant, and d is a

coefficient describing the proportionality between the input to the vertical propeller

and the thrust exerted, approximated as a constant. Parsons and Preston [10], who
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developed the robots, determined most of these parameters: b = 16.89 N-s/m, and

mrob = 7.5 kg. From their work, the approximation can be made that d ≈ 0.1 N.

If the robot moves higher, a longer section of the tether is being lifted by the

robot, so we can make the approximation that the force of the tether is proportional

to z. The dynamics then reduce to:

mrobz̈ = −fz − bż + du (3.1.2)

where f a coefficient describing the proportionality of the pull of the tether with

respect to z. We can find the transfer function of the system by taking the Laplace

transform:

mrobs
2Z = −fZ − bsZ + dU (3.1.3)

⇒ P :=
Z

U
=

d

mrobs2 + sb+ f
(3.1.4)

where U and Z are the Laplace transforms of u and z, respectively, and P is the

transfer function from u to z. A controller with transfer function C can then be used

to track a reference height r with this plant as shown in Figure 3.1.

Σ C P
ur y

−

Figure 3.1: Feedback loop for tracking a reference height

For a PI controller, we have C = Kp+Ki/s for constants Ki and Kp. The transfer

function from r to y then becomes:

PC

1 + PC
=

d(sKp +Ki)

mrobs3 + bs2 + (f + dKp)s+ dKi

(3.1.5)

Note that the parameter Kp allows for compensation for the tether force in the

denominator, so that Kp can be chosen so that the tether has no effect on the stability

of the system. However, the model used here is only an approximation of the tether

pull, and the true dynamics are more complex and path-dependent. For example,

if the tether becomes twisted, it can exert significantly more force than when it is

not. Alternatively, when the robot approaches the bottom of the tank, the rigidity of
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the tether can actually provide an upward force on the robot. These effects can be

alleviated by integral control, which allows the system to achieve zero steady state

error in spite of the variable nature of the tether pull. Since the dynamics of the tether

complicate the control problem, the gains in the controller were chosen experimentally

by Peter Landgren. In that control scheme, Kp = 600, and Ki = 25. Figure 3.2 shows

a step response of 1 m for the closed loop, ignoring the effect of the tether. After 1.75

s, the robot stays within 10 cm of the desired height.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

z
 -

 z
(0

) 
(m

)

Figure 3.2: Step response for tracking of a reference height

Thus, the controller developed by Peter Landgren used a PI controller to control

the vertical propeller of the robot. A similar approach was used in that control scheme

for horizontal adjustments, using two different controllers: an outer control for when

the robot’s distance to its destination was greater than 0.75 m, and an inner control

for when the distance was smaller or equal than this number. This inner controller

was used to reduce overshoot and provide more steady position holding capabilities.

Given the practical limitation of the maximum capacity of the motors, when the

calculated output exceeded this limit, the corresponding servo was simply set at its

maximum allowable capacity.

For the outer horizontal controller, the angle between the heading direction and

the direction to the destination was calculated. If this difference was greater than

90◦, then the thrust was applied at a 90◦ angle, with intensity proportional to the

difference in angle. If the difference was smaller than 90◦, two components for the

thrust were calculated: a tangential component proportional to the difference in angle

(with the same gain as in the case of a difference angle greater than 90◦), and a parallel

component proportional to the distance to the destination. The tail angle was then
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adjusted so that the tail’s thrust would be in the direction of the resulting thrust

vector, and the thrust intensity was calculated as the magnitude of this vector.

The inner horizontal controller was mostly the same as the outer horizontal con-

troller. The main difference is that the parallel thrust component was calculated using

a PI control scheme, as opposed to the P controller. The purpose of this inner con-

troller was to bring the robot closer to its destination, so elimination of steady-state

error was desirable.

One issue that the current version of the controller does not account for is the

induced spin on the robot due to actuation of the top propeller. In a future iteration,

the horizontal controller should compensate for this effect. Another issue is that the

tail of the robot can get misaligned, so that the control scheme results in the robot

going in circles when getting close to its destination if the tail is badly aligned. This

problem currently requires frequent checks of the tail before running the robot in the

tank. Finally, it is still possible for the tether to become so tangled that the robot

is unable to overcome its pull. Substitution of the tether by wireless communication

would simplify most of these issues, and better control schemes could then be applied.

3.2 Field Generation

To simulate a continuous field in the tank, correlated rewards in a discretization of

the space were generated. This discretization was first made by using a square grid

in which the points were set a fixed distance apart. This distance was tuned by ex-

periment to obtain significant difference in performance between different algorithms,

while keeping the running time needed practical. Points were generated at a distance

of at least 0.5 meters from the edge of the tank, to give the robot clearance from the

wall.

Once these points were set, spatially correlated rewards were generated for them

following the procedure outlined in Johnson et al. [3]. A correlation matrix Σ ∈ RN×N

was generated as follows:

Σi,j =

1, if i = j

e−di,j/λ
∗
, if i ̸= j

(3.2.1)

where di,j is the distance between arms i and j, and λ∗ is the length scale of the field.

λ∗ determines how strongly correlated the arms are. Duplicating the value of λ∗ will

mean that an arm will need to be half the distance to be equally as correlated to
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any given arm. Thus, higher values of λ∗ result in smoother fields, and a sample of

an arm gives more information about the arms around it than in the case of a small

value of λ∗. In the limit λ∗ → ∞, the arms become uncorrelated, and in the limit

λ∗ → 0, the arms become uniform.

Parameters mr and σ2
r are then chosen. mr is the mean around which the cor-

related rewards will be distributed, and σ2
r is the variance of the correlated rewards

about mr. A vector R ∈ RN×1 is generated, with each entry being as random Gaus-

sian variable with mean 0 and variance σ2
r .

A vector C ∈ RN×1 of N correlated rewards is then generated as follows:

C = mrJN,1 +QR (3.2.2)

where JN,1 is an N×1 matrix of ones, and Q ∈ RN×N is calculated using the Cholesky

decomposition from Σ, so that QQT = Σ.

The correlation matrix Σ0 given to UCL with correlation with a degree of confi-

dence indicated by σ2
0 and based on a length scale prior λ is calculated similarly as

Σ:

Σ0i,j =

σ2
0, if i = j

σ2
0e

−di,j/λ, if i ̸= j
(3.2.3)

Figure 3.3 shows intensity plots for reward fields for the tank generated using

different values of λ∗, with an edge length of 0.1 m, σr = 25, and mr = 75. The

field is generated for a circular region, so the surrounding region in these plots is

not part of the reward field (and thus has been set to have no influence on the scale

of the plots). For λ∗ = 10−3 m the arms are effectively uncorrelated, and the field

corresponds mostly to noise. As λ∗ is increased to 0.2 m, small clusters of similarly

valued arms begin to form in the area. At λ∗ = 0.8 m, larger clusters form, and at

λ∗ = 103 m, the clusters are bigger, and the field is more uniform. Note as well that

as λ∗ increases, the range of rewards becomes narrower, so that with λ∗ = 103 m any

two arms differ by less than 5, but with λ∗ = 10−3 m, the biggest difference is greater

than 150. As can be seen, the length scale effectively captures the smoothness of the

field.
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Figure 3.3: Resource fields generated using different values of λ∗
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Chapter 4

Simulation Studies

In a robotic field estimation task, the smoothness of the field can vary depending

on the specific application and environmental conditions. Therefore, to evaluate the

applicability of UCL with correlation for this problem, we must assess the performance

of this algorithm for different values of λ∗. Moreover, knowledge of the exact value

of λ∗ is unlikely to be available, so it is desirable to gain an understanding of how

the performance of the algorithm is affected when the length scale estimate λ differs

from λ∗. The simulation studies in this chapter seek to explore these issues.

The algorithms and calculations in this chapter were all implemented using MAT-

LAB (see Appendix B for specific implementations). Unless indicated otherwise, the

procedure used to generate regret curves for different algorithms was as indicated in

these paragraphs. The rewards were generated using mr = 75 and σr = 25. σs was set

to 30, and σ0 was set to 20. At each trial, an appropriate set of means was generated.

Each algorithm was run on the same means for that trial.

If using UCL with or without correlation, a set of priors on the rewards was

generated and given to both versions of the algorithm on that trial. The priors were

either a prior on a “master mean” corresponding to a uniform prior of mr for all

the arms, or a “specific prior” generated by taking the actual rewards and adding

Gaussian noise with standard deviation of σ0 = 20, which results in good priors (low

value of ζ). Each of these methods has its advantages. The specific priors provide

a more detailed description of the field. On the other hand, the master mean better

describes the way the rewards were generated, since this was done by taking mr

and adding a random Gaussian variable to each arm using the correlation structure.

Moreover, in real world applications, it would be easier for an agent to have access to

a master mean estimate than estimates of the arms at every point in space.
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If using UCL with correlation, Σ0 was generated for a particular length scale

estimate λ with the parameter σ0 = 20, using the procedure described in Chapter 3.

The average of all the runs was taken, and confidence intervals of 95% were calculated.

4.1 Simulation 1: Effect of length scale on UCL

with correlation (1D)

4.1.1 Method

The purpose of this study was to evaluate the advantage that UCL with correlated

priors can have over UCB and UCL without correlation, when the estimate of the

length scale is correct (λ = λ∗), and for a fixed time horizon and number of arms. For

each of the two variants of the UCL algorithm, performance both with the master

mean and with specific priors was tested.

10 arms were generated in a one-dimensional space, arranged in a line, each 1

meter apart from its immediate neighbors. Correlated means were generated for a

length scale λ∗ using the procedure described in Chapter 3. The Σ0 matrix input to

UCL with correlation was generated using λ = λ∗. 2000 time steps were used in each

run, and the average was taken over 500 trials.

4.1.2 Results

Figures 4.1, 4.2, and 4.3 show the average regret obtained for the algorithms with

λ∗ = 1, 5, 10 m, respectively, with bands representing 95% confidence intervals. In all

cases, UCB performs the worst, as expected.

At λ∗ = 1 m, the relative performance of each variant of the algorithm is as

expected. UCL with correlation performs better than UCL without correlation for

the same kind of priors, although this difference is small. Moreover, any of the two

variations of the algorithm performs better with the specific priors.

At λ∗ = 5 m, an unexpected trend appears. Although the same initial order by

performance as in the case λ∗ = 1 m is observed in the first time steps of the algorithm,

UCL with correlation and the specific means very quickly starts to perform worse than

UCL with correlation and the master mean. It also starts to perform worse than the

uncorrelated UCL with the specific priors, and is close to reaching the performance of

uncorrelated UCL with a master mean. In addition, unlike in the case where λ∗ = 1
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Figure 4.1: Average cumulative regret for 1D arms, λ∗ = 1 m

Figure 4.2: Average cumulative regret for 1D arms, λ∗ = 5 m

m, UCL with correlation and the master mean performs better than UCL with the

specific means.

At λ∗ = 10 m, the gap between the two regret curves of uncorrelated UCL and

that of UCL with correlation with the master mean grows wider. In contrast, the
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Figure 4.3: Average cumulative regret for 1D arms, λ∗ = 10 m

regret curve of UCL with correlation and the specific priors now intersects those

of UCL without correlation earlier. As λ∗ keeps increasing beyond this value, this

effect tends to become stronger: UCL with correlation and the master mean performs

increasingly better than UCL with the specific priors, and UCL with correlation and

the specific priors achieves linear regret. Eventually, the means generated are so

uniform that most of the regret curves are close to one another, except for that of

UCL with correlation and the specific means, which performs worse (see Figure A.1

Appendix A for one such example).

Finally, we can notice that the gap between the regret curves of UCB and UCL

without correlation and specific priors narrows as λ∗ is increased.

4.1.3 Discussion

As expected, UCL with correlation performs similarly to uncorrelated UCL when λ∗

is small: as λ∗ approaches zero, the arms become effectively uncorrelated. Moreover,

the correlation matrix given to UCL with correlation approaches σ2
0IN , so perfor-

mance should approach that of UCL without correlation. In addition, larger values of

λ∗ result in more uniform reward fields with smaller difference in rewards between the

arms, so it is to be expected that the gap in performance between UCB and uncor-

related UCL with specific priors is decreased as λ∗ is increased. This is because the
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specific priors provided to uncorrelated UCL are a more significant advantage with

respect to an uninformed agent performing UCB when the rewards are less uniform.

Given a set of priors on the means, we would expect UCL with correlation to

perform better than uncorrelated UCL. In addition, for either UCL with or without

correlation, we would expect performance to be better with the specific priors than

with the master mean. Indeed, this is the case for uncorrelated UCL in all 3 simula-

tions. Moreover, when using the master mean, UCL with correlation performs better

than uncorrelated UCL. Nonetheless, in apparent contradiction with these trends,

UCL with correlation and specific priors, which should have the best performance,

performs worse than the other algorithms for λ∗ = 5 m and λ∗ = 10 m. It could

even be the case that this decay in performance happens eventually, no matter the

length scale, so that provided a long enough time horizon, this would also happen

with λ∗ = 1 m.

Since the performance seems to be better at the beginning than that of the other

algorithms, it seems to be the case that this algorithm initially makes very well

informed choices, but eventually converges incorrectly and chooses the wrong arm.

In fact, Reverdy et al. [11] remarked that while UCL with correlation converges faster

than uncorrelated UCL, correctness depends on how well the prior Σ0 describes the

actual correlation structure of the rewards. Although the arms were generated using

the same correlation structure that was provided as a prior, it may be the case that

the master mean better complements Σ0 as a representation of the field. The specific

priors are generated with noise added to the actual rewards, resulting in an initial

belief state that does not reflect the smoothness of the arms as accurately as the

original field.

This noise may also cause UCL with correlation to converge quickly to an arm

that is close in space to the optimal one. In fact, since high values of λ∗ result in more

uniform priors, and since the noise magnitude used to generate the specific priors is

kept constant, this would mean that the algorithm could be more easily misled into

exploiting a near-optimal arm that is close in space to the optimal one. Afterwards,

even if both arms were sampled, the sampling variance would make it harder to

differentiate between them if the field is very smooth. This would explain the initial

advantage over the other algorithms: the algorithm has more quickly identified the

general area around which the optimal arm lies, given the initial combined knowledge

of priors on the arms and their correlation structure, but may often exploit a sub-

optimal arm.

An important question is then why the combination of the specific priors and
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knowledge of the correlation structure results in this bad performance, when either

of these alone does not seem to cause the behavior. UCL without correlation, and

correlated UCL with the master mean do not exhibit performance worse than that of

UCB in any of the simulations. In the case of having the master mean as a uniform

prior, the agent is not mislead into any particular arm by its priors on the means. In

the case of uncorrelated UCL, the assumption that the arms are uncorrelated causes

the agent to explore further, so even if the agent is initially misled, its more frequent

visits to arms that initially seem sub-optimal allow it to obtain a more accurate belief

about what the optimal arm is.

We can conclude that in the cases analyzed, the performance of UCL with corre-

lation and a master mean was reliably better. A prior on the means was only useful

at smaller length scales and during the first series of time steps. Moreover, at smaller

length scales, the advantage of having the correct priors was not as significant. In

contrast, UCL with the master mean performed better than the other algorithms at a

length scale of 10 and higher. Additionally, by comparing its performance with UCL

without correlation and specific priors, we can conclude that knowledge of the cor-

relation structure of the rewards was more useful than good priors. The addition of

the good priors granted an advantage during the first few time steps, but in the long

term, it was best for the algorithm to be provided with the average of the rewards.

4.2 Simulation 2: Effect of length scale prior vari-

ation on UCL with correlation in a robotic

search task

4.2.1 Method

This study sought to simulate the performance of a robot in the testbed executing an

MAB search using a UCL algorithm with correlated priors on a spatially correlated

field generated using a length scale λ∗. The goal was to evaluate performance as λ was

varied for a fixed λ∗. Given the results from Simulation 1, the priors given to UCL

with correlation were in the form of the master mean, for more reliable performance.

The arms corresponded to discretized points in a circular area in the tank, with 0.5

m clearance from the tank walls. The discretization consisted of a grid of points with

an edge of 0.8 m. Performance was evaluated by calculating the average accumulated
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regret and the average distance traveled. This distance was approximated as the total

length of a series of straight lines joining each pair of consecutive points visited.

The length scale λ∗ was set as 1, 5, or 25 m for three different simulations. For each

of these simulations, UCL with correlation was tested for λ = 1, 5, 25 m. Thus, in one

case, λ∗ = 1 m, all runs of UCL but one had an overestimate of the length scale, and

in the case λ∗ = 25 m, all the runs of the algorithm but one had an underestimate.

These three numbers were chosen as the possible length scales so that they were a

geometric progression by a factor of 5.

Finally, to help visualize the trends obtained by increasing or decreasing the length

scale, the cumulative regret and the total distance traveled at t = 1000 for UCL with

correlation were calculated for different values of λ/λ∗ ranging between 0.2 and 40,

including both 1/5 and 5 for comparison with the previous simulations in this study.

These calculations were made for all three values of λ∗ used.

1000 time steps were simulated, and the average was taken over 1000 runs. For

comparison purposes, UCB and UCL without correlation (and the specific priors)

were also run.

4.2.2 Results

Figure 4.4: Average cumulative regret for agent in tank, λ∗ = 1 m
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Figure 4.5: Average distance traveled for agent in tank, λ∗ = 1 m

Figure 4.6: Average cumulative regret for agent in tank, λ∗ = 5 m

Figures 4.4, 4.6, and 4.8 show the average cumulative regret for the varying values

of λ∗, and Figures 4.5, 4.7, and 4.9 show the average distance traveled curves for these

same values, with confidence intervals of 95%.

In the case of λ∗ = 1 m, performance in regret for UCL with λ = λ∗ is close to
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Figure 4.7: Average distance traveled for agent in tank, λ∗ = 5 m

Figure 4.8: Average cumulative regret for agent in tank, λ∗ = 25 m

that of uncorrelated UCL, but has began to be better than it towards the end of

the time horizon, consistent with the general trends observed in Section 4.1. In this

case, the overestimate λ = 5 m causes an initial reduction in regret, but this backfires

towards the end of the time horizon, where it results in performance closer to that
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Figure 4.9: Average distance traveled for agent in tank, λ∗ = 25 m

Figure 4.10: Average cumulative regret at t = 1000 and λ∗ = 5 m for different values
of λ/λ∗ using UCL with correlation

of uncorrelated UCL. On the other hand, the overestimate λ = 25 m results in really

bad performance: the regret keeps rising above that of uncorrelated UCL, and even

begins to reach that of UCB. In addition, the bigger error bars for this overestimate
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Figure 4.11: Average distance traveled at t = 1000 and λ∗ = 5 m for different values
of λ/λ∗ using UCL with correlation

show higher variability in cumulative regret, and therefore less reliability in long

term performance for this length scale estimate. Finally, note that uncorrelated UCL

initially performs better than all three runs of correlated UCL, consistent with the

results of Section 4.1.

The plot of the average distance shows some more straightforward behavior. The

robot using UCB travels the most, then that using uncorrelated UCL, and then those

using UCL with correlation in order of λ, from smallest to highest.

For λ∗ = 5 m, the most noticeable change in the cumulative regret is that now

UCL with the correct length scale (λ = 5 m) performs much better than UCL without

correlation. The length underestimate of 1 m results in performance close to that of

uncorrelated UCL, but this performance improves with respect to that algorithm as

time advances. Surprisingly, the overestimate of the length scale, λ = 25 m, results

in lower cumulative regret than λ = 5 m.

The order of performance by distance traveled is the same as in the case of λ∗ = 1

m, but most notably the gap between the curves of λ = 25 m and λ = 5 m has

widened; an overestimate of the length scale by a factor of 5 now results in a more

significant reduction in distance.

For λ∗ = 25 m, consistent with the results from Section 4.1, the regret curves

are steeper than in the other two cases for the same time horizon. Performance with
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λ = 1 m is close to that of uncorrelated UCL. Moreover, bigger values of λ result in

smaller accumulated regret.

The distance curves are also steeper, and have the same order by performance as

before.

Figures 4.10 and 4.11 show the plots of average cumulative regret and total dis-

tance traveled, respectively, in terms of λ/λ∗, at t = 1000 and λ∗ = 5 m for correlated

UCL, with error bars corresponding to 95% confidence intervals. In the interval

tested, minima for the regret and for the distance traveled occur at values of λ/λ∗

greater than 1. The plots corresponding to λ∗ = 1 m and λ∗ = 25 m are similar and

have this same property for the local minima, and are are shown in Section A.2 in

Appendix A.

4.2.3 Discussion

A larger value of λ means that the agent gathers more information about the arms

in the vicinity of an arm it samples. This causes the algorithm to converge faster. In

the case of small values of λ, an arm does not give much information about the arms

around it, and the agent is forced to explore further. The cost of this exploration

is an increase in the distance traveled. Consistent with our expectations, we see a

reduced travel distance for the robot as the length scale increases for all values of λ∗

in Figures 4.5, 4.7, and 4.9, but the distance begins to increase again as λ/λ∗ keeps

increasing, as can be seen in Figure 4.11 for λ∗ = 5 m and for the other length scales in

Figures A.4 and A.5. This indicates that if the length scale is grossly overestimated,

the distance traveled can actually increase. A possible explanation for this will be

provided later in this section.

In the runs for λ∗ = 5 m and λ∗ = 25 m, underestimating the length scale by a

factor of 5 or more results in a higher accumulated regret. In these cases, the agent

explores more at the cost of visiting the optimal arm less. Given that underestimating

the length scale also results in the agent traveling a longer distance, performance is

worse by both metrics.

On the other hand, the results of overestimating the length scale on regret are less

straightforward. Overestimating by a factor of 5 when λ∗ = 1 m results in similar

regret rates within the time horizon tested, albeit this gap widens with increasing

number of time steps. Overestimating by a factor of 25 in this case is fatal, and results

in performance that eventually gets worse than that of UCB. This happens because

the agent exploits suboptimal arms. Surprisingly, when λ∗ = 5 m, overestimating by
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a factor of 5 results in lower accumulated regret. In this specific case, given that the

average distance traveled by overestimating by a factor of 5 is also lower, the agent

performs best by both metrics by overestimating λ.

These observations are better informed by the data in Figure 4.10. The local

minimum of the cumulative regret at time t = 1000 appears to occur at some λ/λ∗ > 1

This property is also observed for λ∗ = 1 m and λ∗ = 25 m (see Section A.2). It would

seem that for each value of λ∗ the optimal estimate λ is higher than λ∗. Increasing

λ beyond this optimal overestimate results in worse performance, until eventually

the regret curve becomes linear, worse in performance than UCB (see Section A.3 in

Appendix A for one such example). One possible way of explaining this is that an

overestimate that is low enough might combine the benefits of a faster convergence

towards exploitation while having a similar degree of a correlation belief between the

arms. In other words, although an overestimate of λ should cause an increase in

regret because the agent’s belief of an arm is influenced excessively by the samples

of arms around it (when compared to the real correlation that arms have on each

other in the field), as λ is increased beyond λ∗ this might initially happen slower than

the reduction in regret caused by higher degrees of exploitation. As λ is increased

beyond λ∗, the quicker convergence to exploitation provides an initial reduction in

regret, until it results in suboptimal arms being exploited.

A similar explanation can be made for the trends in Figure 4.11. Although faster

convergence reduces the amount of exploration, doing so also increases excessively

the estimates of sub-optimal arms that are too far away from the optimal arm. This

results in more arms being visited, and the distance being increased. The result of

these two opposite effects could then also be that the overestimate results in the best

performance.

Therefore, in the tests provided, it is best to overestimate the length scale than

to underestimate it, since overestimating can result in smaller accumulated regret

and distance traveled. This suggests that a robot running this search task should err

on making its estimate of the length scale big, but not unreasonably so: the cost of

overestimating the length scale by a factor of 25 can be fatal, so an accurate model is

still desirable. The threshold for λ/λ∗ after which performance gets worse is smaller

for smaller values of λ∗, so the estimate must be more accurate if the field is less

smooth.
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Chapter 5

Experimental Study

5.1 Method

The purpose of this experiment was to implement the robotic search simulation de-

scribed in Section 4.2, in order to gain a better understanding of the results from that

simulation and the difference in performance for UCL with correlation for different

length estimates λ given a fixed λ∗.

The parameters used to generate the means and discretization of the tank were

the same as those in the simulation from Section 4.2. The parameter λ∗ was chosen

as 5 m, and the length scales used for UCL with correlation were 1, 5 and 25 m, to

observe the effects of increasing or decreasing the length scale by a factor of 5.

The surface of the tank was discretized with an edge length of 0.8 m, and each

of these points was assigned a reward based on a length scale λ∗, as in Section 4.2.

UCB, uncorrelated UCL with specific priors, and correlated UCL with a master mean

and three different length scale priors were all ran with this resource field, for a single

trial and for 120 time steps. The number of time steps was reduced from 1000 for

practical reasons with the robot runs. A trial was chosen that had regret and distance

traveled plots representative of those of an average run, which was calculated using

1000 trials.

Once this trial was chosen, the search was simulated in the tank for the UCL

with correlation algorithm with the three different values of λ. For each simulation,

the sequence of arms and spatial locations generated for the trial were input to the

controller described in Section 3.1. First, the robot was made to move to the first

point in the search. Once within 20 cm of its destination, the destination was changed.
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This was done repeatedly until all the destination points were reached.

Each run was recorded with a camera on top of the tank. For each run, time was

calculated from the moment the first arm was reached to the moment the last arm was

reached. The distance was calculated similarly, by keeping a record of the coordinates

of the robot, taken once roughly every 0.1 seconds, and then adding the straight line

distances between consecutive points. The average speed was then calculated from

these two quantities.

5.2 Results

Figure 5.1 shows the accumulated regret by the agent for the five different search

schemes, and Figure 5.2 shows the average regret with 95% confidence intervals for

comparison. Note the order by performance towards the end of the interval is the

same for the single trial as for the average. The general behavior is similar to that of

the average, with similar values towards the end of the interval, in 3 cases within 1.5

% of the average values (for uncorrelated UCL and UCL with correlation and λ = 1, 5

m).

Likewise, Figures 5.3 and 5.4 show the (straight-line) distance traveled and the

average over 1000 runs, respectively. The order by performance by the end of the

interval is the same as in the average case, and the relative differences between the

curves are similar, although the actual values are not as close as in the case of the

regret curves.

The same trends in average regret and distance traveled are observed as in Section

4.2, except that UCL with correlation and λ = 1 m has not yet achieved a smaller

regret than uncorrelated UCL. Nonetheless, we know that this happens eventually,

as can be seen in Figure 4.6, and in fact the gap in regret has already started to close

between these two by time step 120.

Thus, the sample trial chosen is representative of the average performance.

Figure 5.5 shows color plots for the resource field and the number of visits for each

of the 5 algorithms ran on the field. Note that the three squares at each corner of

the plots are not part of the discretized space and are set to have no influence on the

color scale. In each of the plots, the color scale is set from the minimum value to the

maximum of the quantity being represented, so that the intensity is always relative

to these two extremes.

UCB shows the most exploration, with a maximum number of visits on a sin-

gle arm under 20, and a significant concentration of visits around half of the tank.
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Furthermore, the optimal arm is not the most visited one. On the other hand, uncor-

related UCL shows less exploration than UCB. The most visited point has 33 visits,

and the visits are more concentrated around the optimal arm.

With UCL with correlation, we observe trends consistent with the previous inter-

pretation of the regret and distance curves. With increasing values of λ, the visits

become more concentrated around the optimal arm. The maximum number of visits

for λ = 1, 5, 25 m are 24, 48, and 72, respectively. Only at λ = 25 m is the optimal

arm the most visited point. At λ = 5 m, an adjacent arm is exploited the most,

and at λ = 1, an arm diagonal to it is. However, given the spatial correlation of the

rewards, these are near optimal arms..

Table 5.2 shows a comparison of time, total distance traveled, and average speed

for all 3 runs. The underestimation of the length scale, with λ = 1 m, results in 69.1 s

of extra running time when compared to the best of the other two runs, and 31.2 m of

extra distance. In contrast, the difference between the other two runs is smaller: 44.8

s and 3.8 m. While the run with λ = 5 m results in the most time taken to complete

the search, λ = 25 m resulted in the most distance traveled. This is unexpected and

seemingly inconsistent with the straight line calculation distance indicating that the

bigger length scale resulted in a smaller distance traveled. Nonetheless, the difference

is smaller than when comparing to λ = 1 m.

Figures 5.6, 5.7, and 5.8 show the videos of the robot search runs for λ = 1, 5, 25

m, respectively, with the resource field color map overlaid over the image. The videos

have been sped up by a factor of 8. Note that all of the algorithms converge near the

optimal arm as time advances, and that whenever the robot explores an area of the

field with low rewards, it travels far away from that area.

λ Time (s) Dist. Traveled (m) Avg. Speed (m/s)
1 455.1 118.3 0.260
5 386.0 83.3 0.216
25 341.2 87.1 0.255

Table 5.1: Comparison of robot performance for different values of λ
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Figure 5.1: Regret accumulated by the robot, λ∗ = 5 m

Figure 5.2: Average simulated regret accumulated by the robot, λ∗ = 5 m

32



0 20 40 60 80 100 120

Number of time steps

0

20

40

60

80

100

120

140

160

180

200

D
is

ta
n

c
e

 t
ra

v
e

le
d

 (
m

)

UCB

UCL (no correlation)

UCL with Correlation - λ = 1 m

UCL with Correlation - λ = 5 m

UCL with Correlation - λ = 25 m

Figure 5.3: Simulated distance traveled by the robot λ∗ = 5 m

Figure 5.4: Average simulated distance traveled accumulated by the robot, λ∗ = 5 m

33



Resource field

-2 0 2

x(m)

-2

0

2

y
(m

)

20

40

60

80

100

R
e

w
a

rd

Number of visits, UCB

-2 0 2

x(m)

-2

0

2

y
(m

)

5

10

15

N
u

m
b

e
r 

o
f 

v
is

it
s

Number of visits, UCL (no correlation)

-2 0 2

x(m)

-2

0

2

y
(m

)

0

10

20

30

N
u

m
b

e
r 

o
f 

v
is

it
s

Number of visits, UCL, λ  = 1 m

-2 0 2

x(m)

-2

0

2
y
(m

)

0

5

10

15

20

N
u

m
b

e
r 

o
f 

v
is

it
s

Number of visits, UCL, λ  = 5 m

-2 0 2

x(m)

-2

0

2

y
(m

)

0

10

20

30

40

N
u

m
b

e
r 

o
f 

v
is

it
s

Number of visits, UCL, λ  = 25 m

-2 0 2

x(m)

-2

0

2

y
(m

)

0

20

40

60

N
u

m
b

e
r 

o
f 

v
is

it
s

Figure 5.5: Resource Field and Number of Visits per Point for UCB, UCL without
correlation, and UCL with correlation for different values of λ
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Video of Robot Run

Figure 5.6: Robot Search Task Video, λ = 1 m

Video of Robot Run

Figure 5.7: Robot Search Task Video, λ = 5 m

Video of Robot Run

Figure 5.8: Robot Search Task Video, λ = 25 m
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5.3 Discussion

In the three runs executed, performance, in general, improved with growing values

of λ. As observed and reasoned before, larger length scale priors result in more

exploitation and earlier convergence. All correlated UCL runs converged close to

the optimal arm, for all values of λ. This resulted in increasingly smaller values of

accumulated regret as λ was increased. The straight line total distance decreased as

a result of the quicker convergence; constant exploitation of an arm means less travel

for the robot.

Regarding the simulation, the results give insight as to why overestimating the

length scale can result in better performance. Note that this particular resource field

is almost a gradient from one end of the tank to another. This means that when

the robot explores the region of lowest rewards at the left, it is likely driven away as

much as possible from it. In fact, we see this with the first two time steps of each

of the robots: first, a square in the center left region is visited. This square has a

small reward, and in the second time step, the robot visits the square farthest away

from this, which is a point with high reward. If λ is bigger, but not big enough that

the estimates are heavily distorted, this effect may cause quicker convergence to the

optimal arm. An arm with a small reward in this particular field is on the opposite

end of the optimal arm, and a higher value of λ means that this estimate will affect

more the arms around it. Given that the optimal arm is at the opposite end, this

causes the robot to begin focusing on the opposite side of the tank quicker, where the

best rewards lie. This reasoning is consistent with the discussion for Simulation 2 in

Section 4.2.

In spite of this, we must keep in mind that this is a particular trial, which however

was representative of the average performance. Given the number of discretization

points, there is a relatively high probability that the optimal arm will lie on the edge of

the tank. In fact, it is very unlikely that it will lie in the middle 9 squares: 9/37. Thus,

the probability that the optimal arm lies outside of this area is approximately 75.7%,

and this is close to or at the edge of the discretization area. Given the smoothness of

the field, it could be likely that the least favorable rewards would be located in the

opposite edge of the tank. Thus, we could expect more fields that resemble a gradient

from one edge to the other to appear.

If this is the reason that overestimating the length scale results in better per-

formance, it is possible that increasing the area of the field would make this effect

diminish or even disappear, because doing so would decrease the fraction of points

36



that lie on the outer ring of the field (the length of the circumference grows propor-

tional to the radius, while the area grows proportional to the radius squared). This

would mean that less fields would look like a gradient, so there could be more in-

stances in which overestimating the length scale by 5 would hurt the agent’s chances

of finding the optimal arm quickly. These results suggest that, although overestimat-

ing the length scale can result in better performance, the benefits of this overestimate

could diminish or disappear for other discretization configurations.

With regards to the performance of the robot in executing the tasks, the tendency

towards more exploitation given by increasing λ is shown, in general, in the metrics

summarized in Table 5.2. The time taken was reduced with increasing values of

λ. While the increase in actual distance traveled from λ = 5 m to λ = 25 m is

unexpected, we must keep into account from Figure 5.3 that the theoretical straight

line distances were close to each other. The control scheme used does not really ensure

a straight line trajectory, so this slight difference could be easily reversed. Moreover,

there were factors that could further increase the distance traveled in any given run.

The tether pulled the robot in ways that depended on the robot’s previous trajectory,

and this occasionally caused the robot to struggle to reach a point because it had

to drag the cable through the bottom of the tank. Moreover, although the robot’s

tail fin was aligned before each run, slight misadjustments could result in occasional

overshoots in the form of ample curves when the robot traveled long distances at

full speed. Additionally, although the control scheme used sought to keep the robot

at a constant height, the robot was free to move in the vertical direction subject to

the dynamics of the system, possibly adding to the distance traveled. Finally, the

straight line distance is an approximation that does not take into account the effects

of inertia, which increase the distance traveled in sharp turns. All of these nuances

and dynamics may cause the difference in average speed.
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Chapter 6

Conclusions

A spatial field estimation task was approached as a Gaussian MAB problem with

arms corresponding to discretized points in space. The smoothness of the field was

modeled by a spatial correlation structure for the arms, based on a parameter λ∗, the

length scale of the field. An algorithm for Gaussian MAB problems with correlated

arms, UCL, was then used in this problem. A robot was put on a tank to perform

the search. Performance was then evaluated under different estimates of the length

scale prior λ provided to the algorithm.

Simulations showed that the UCL algorithm can exploit this knowledge of the

correlation and obtain significant reduction in regret when compared to the more

traditional UCB algorithm. For the fields generated of 1D arms with varying degrees

of smoothness, it was shown that for UCL this knowledge of the correlation can be

even more effective in reducing regret than good priors (priors with an appropriate

degree of confidence, when considering how much they differ from the true values of

the rewards). It was also found that, in this task and with the noise level used, UCL

with correlation worked more reliably when the priors provided are the mean of all

the arms, instead of a noisy estimate of the reward at each point.

A spatial search in a 2D circular surface corresponding to a discretized version

of the tank surface was then simulated for different values of λ∗, when UCL with

correlation is provided with estimates of the length scale λ that do not necessar-

ily correspond to λ∗, and when the priors on the means provided correspond to the

mean of the field. Performance was evaluated in terms of regret and distance trav-

eled. Although it was shown that an underestimate in length scale resulted in worse

performance, it was also found that better performance was attained both in distance

traveled and regret for overestimates of the length scale, provided these estimates
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were not grossly inaccurate. The size of this threshold was found to be dependent on

the length scale of the field λ∗.

Finally, this 2D search task was implemented using a robot in the testbed, using

a representative run of the second simulation study, with λ∗ = 5 m. A run with

performance similar to that of the average was chosen. Visualizations of the field

and the number of visits for each point in the discretization provided insight as to

how changing the length scale affects performance. Performance was also evaluated

by measuring the time taken by the robot to complete the task, the total distance

traveled, and the average speed.

It was found that with the length scale estimates tested, and consistent with the

results of the second simulation study, smaller length scale estimates resulted in more

exploration. Accordingly, the simulations showed that smaller values of λ resulted

in a longer distance traveled and a longer time to finish the run. A discrepancy was

found between the simulated distance and the actual distance traveled in two runs,

but it was likely due to control issues and approximations of the simulated distance.

The experiments presented show that UCL with correlation can be used effectively

to perform a spatial field estimation task under a Gaussian MAB framework for fields

of varying smoothness. The effectiveness of this approach varies depending on how

well the length scale estimate matches the actual length scale that describes the

spatial correlation of points in the field. It was shown for fields of varying smoothness

that an overestimate of the length scale can result in better performance. This leads

to the conclusion that, in the search task provided, an agent performing UCL with

correlation that can only estimate the length scale of field should make an overestimate

instead of an underestimate, with the consideration that this overestimate must not

exceed some threshold, the size of which depends on the smoothness of the field.

Future work can focus on exploring these effects on performance in a wider range of

fields with varying field length scales, number of dimensions, number of points in the

discretization, and area and shape of the discretized region. A better understanding of

the conditions under which an overestimate of the length scale can yield better results

than a correct estimate is necessary. If the optimal estimate is also an overestimate

in a wider range of conditions, a way of estimating the optimal value of λ would

be desirable. This would dictate the tolerance needed in the estimate of the length

scale. In addition, performance in distance traveled can be improved by introducing

transition costs into the model. The studies in this thesis could then be repeated

for such an implementation. Finally, the effects of length scale estimates could be

studied in the multi-agent problem. In that case, the space is separated into areas,
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each assigned to a robot that searches only in that area. Each robot has access to

the information obtained by the other robots. For smooth fields and good estimates

of the length scale, the measurements taken by other robots would give a robot

more information about its area. This should result in faster convergence and better

performance than when the robots have no knowledge of the spatial correlation.

40



Bibliography

[1] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scien-

tists and Engineers. Princeton University Press, Princeton, NJ, 2008.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47(2):235–256, 2002.

[3] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis.

Pearson, Upper Saddle River, NJ, 6 edition, 2007.

[4] E. Kaufmann, O. Cappe´, and A. Garivier. On bayesian upper confidence bounds

for bandit problems. Proceedings of the Fifteenth International Conference on

Artificial Intelligence and Statistics, pages 592—-600, 2012.

[5] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation

Theory. Pentice-Hall, Englewood Cliffs, NJ, 1993.

[6] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6(1):4–22, 1985.

[7] A. Marjovi and L. Marques. Optimal spatial formation of swarm robotic gas

sensors in odor plume finding. Autonomous Robots, 35(2):93–109, 2013.

[8] M. F. Mysorewala, L. Cheded, and D. O. Popa. A distributed multi-robot

adaptive sampling scheme for the estimation of the spatial distribution in

widespread fields. EURASIP Journal on Wireless Communications and Net-

working, 2012(1):1–19, 2012.

[9] M. F. Mysorewala, D. O. Popa, and F. L. Lewis. Multi-scale adaptive sampling

with mobile agents for mapping of forest fires. Journal of Intelligent and Robotic

Systems, 54(4), 2008.

41



[10] B. Parsons and J. Preston. The beluga project: Development of a testbed for

autonomous underwater vehicles. Princeton University Senior Thesis, April 2011.

[11] P. B. Reverdy, V. Srivastava, and N. E. Leonard. Modeling human decision

making in generalized gaussian multiarmed bandits. Proceedings of the IEEE,

102(4):544–571, 2014.

[12] S. Vakili, K. Liu, and Q. Zhao. Deterministic sequencing of exploration and

exploitation for multi-armed bandit problems. IEEE Journal of Selected Topics

in Signal Processing, 7(5):759–767, 2013.

42



Appendix A

Additional Plots

A.1 Additional results of Simulation 1

The plot in this section provides an additional result of the experiment in Section 4.1,

for λ∗ = 100 m. Note that UCL with correlation and a master mean gives the lowest

regret, but with the specific priors, it gives the highest regret.

Figure A.1: Average cumulative regret for 1D arms, λ∗ = 100 m
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A.2 Plots of performance of UCL with correlation

for varying values of λ/λ∗

The plots in this section are the results of the study described in Section 4.2 and

complement the graphs already included there.

Figure A.2: Average cumulative regret at t = 1000 and λ∗ = 1 m for different values
of λ/λ∗ using UCL with correlation
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Figure A.3: Average cumulative regret at t = 1000 and λ∗ = 25 m for different values
of λ/λ∗ using UCL with correlation

Figure A.4: Average distance traveled at t = 1000 and λ∗ = 1 m for different values
of λ/λ∗ using UCL with correlation
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Figure A.5: Average distance traveled at t = 1000 and λ∗ = 25 m for different values
of λ/λ∗ using UCL with correlation
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A.3 Effect of gross overestimation of λ in 2D task

Figures A.6 and A.7 show the average cumulative regret and total distance traveled

for UCB, UCL, and UCL with correlation for different length scales, with bands

corresponding to confidence intervals of 95%. The means are correlated as in the

simulation in Section 4.2, with λ∗ = 5 m, but in this case, the overestimate of the

length scale is 104 m, several orders of magnitude above λ∗ = 5 m. Note that, for the

overestimate, regret approaches linear behavior, and performance is worse than that

of UCB. The distance traveled is higher than that obtained with λ = λ∗.

Figure A.6: Average cumulative regret for agent in the tank, λ∗ = 5 m, when UCL
with correlation is provided with a gross overestimate of the length scale (λ >> λ∗)
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Figure A.7: Average distance traveled for agent in the tank, λ∗ = 5 m, when UCL
with correlation is provided with a gross overestimate of the length scale (λ >> λ∗)
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Appendix B

MATLAB Programs

B.1 UCB

B.1.1 ucb.m

1 % Simulates a multi−armed bandit algorithm with a UCB for nTSteps

2 % (including an initial exploration phase with all arms).

3 % Returns the reward and the regret as a function of the number of

4 % iterations, starting at 0, as column vectors. Also returns the ...

sequence

5 % of arms played.

6 % m is a vector representing the means of the arms, and stdDev their

7 % standard deviations.

8

9 function [reward, regret, arms] = ucb(m, stdDev, nTSteps)

10

11 [nArms, ¬] = size(m);

12 arms = zeros(nTSteps, 1);

13

14 if nTSteps < nArms + 1

15 error('The number of time steps must be greater than the ...

number of arms')

16 end
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17

18

19 reward = zeros(nTSteps + 1, 1); % The accumulated reward at time t

20 regret = zeros(nTSteps + 1, 1); % The accumulated regret at time t

21 n = zeros(nArms, 1); % The number of times that each arm has ...

been played

22 mEmp = zeros(nArms, 1); % The empirical mean of each arm

23 maxM = max(m); % The highest mean of all the arms

24

25

26 % Stage 1: Explore. Sample each arm once.

27 [samplesExp, rewardExp, regretExp] = sampleAll(m, stdDev, nArms, ...

maxM);

28 for k = 1 : nArms

29 arms(k) = k;

30 end

31 mEmp(1:nArms) = samplesExp;

32 reward(1:(nArms + 1)) = rewardExp;

33 regret(1:(nArms + 1)) = regretExp;

34

35 n = ones(nArms, 1); % The number of times that each arm has ...

been played

36

37 % Stage 2: play the arm with the highest q i

38 for k = (2 + nArms) : (nTSteps + 1)

39 % Choose the arm. q i is the highest value that arm i can have

40 q = mEmp + stdDev .* sqrt(2 * log(k − 1) ./ n);

41 [¬, arm] = max(q);

42

43 % Play the arm and update data

44 arms(k − 1) = arm;

45 sample = normrnd(m(arm), stdDev(arm));

46 mEmp(arm) = (mEmp(arm) * n(arm) + sample) / (n(arm) + 1);

47 n(arm) = n(arm) + 1;

48 reward(k) = reward(k − 1) + sample;

49 regret(k) = regret(k − 1) + maxM − m(arm);
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50 end

51

52

53 end

B.1.2 sampleAll.m

1 % Samples all of the arms once. The medians are specified in m, the

2 % standard deviations in stdDev, and nArms is the number of arms. ...

The max

3 % median is specified in maxM. Returns the samples as a column ...

vector of

4 % size nArms. Returns the reward and regret, assuming that no ...

arms have

5 % been played before, as a function of the number of iterations, ...

starting

6 % at 0.

7

8 function [samples, reward, regret] = sampleAll(m, stdDev, nArms, ...

maxM)

9

10 samples = zeros(nArms, 1);

11 regret = zeros(nArms + 1, 1);

12 reward = zeros(nArms + 1, 1);

13

14 for k = 1 : nArms

15 samples(k) = normrnd(m(k), stdDev(k));

16 reward(k + 1) = reward(k) + samples(k);

17 regret(k + 1) = regret(k) + maxM − m(k);

18 end

B.1.3 ucbAvg.m
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1 % Runs UCB a number of times. In each trial the algorithm is

2 % repeated nTSteps number of times. Returns the average reward ...

and regret

3 % as functions of the number of time steps from 0, and errors ...

corresponding

4 % to 95% confidence intervals.

5 % Input means, a matrix of means to be used for each trial. Each ...

column

6 % represents a mean to perform a trial with. The matrix must have ...

nTrials

7 % columns.

8

9 function [rewardErr, regretErr, rewardAvg, regretAvg] =...

10 ucbAvg(means, stdDev, nTSteps)

11

12 [¬, nTrials] = size(means);

13

14 rewardAvg = zeros(nTSteps + 1, 1);

15 regretAvg = zeros(nTSteps + 1, 1);

16

17 % Run ucb nTrials times with different means each time.

18 reward = zeros(nTSteps + 1, nTrials);

19 regret = zeros(nTSteps + 1, nTrials);

20 for k = 1 : nTrials

21 [newReward, newRegret, ¬] = ucb(means(:, k), stdDev, nTSteps);

22 reward(:,k) = newReward;

23 regret(:,k) = newRegret;

24 rewardAvg = rewardAvg + newReward;

25 regretAvg = regretAvg + newRegret;

26 end

27

28 % Compute average.

29 rewardAvg = rewardAvg / nTrials;

30 regretAvg = regretAvg / nTrials;

31
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32 % Compute error

33 rewardErr = confInterval(reward, rewardAvg);

34 regretErr = confInterval(regret, regretAvg);

35

36 end

B.2 UCL without Correlation

B.2.1 ucl.m

1 % Simulates a multi−armed bandit algorithm with a UCL for nTSteps

2 % Returns the reward and the regret as a function of the number of

3 % time steps, starting at 0, as column vectors, and the sequence ...

of arms.

4 % m is a vector representing the means of the arms, and stdDev their

5 % standard deviations. The priors are in the form of miu 0, a ...

column vector

6 % of means, and variance variance 0.

7

8 function [reward, regret, arms] = ucl(m, stdDev, miu 0, ...

variance 0, nTSteps)

9

10 [nArms, ¬] = size(m);

11 arms = zeros(nTSteps, 1);

12

13 reward = zeros(nTSteps + 1, 1); % The accumulated reward at time t

14 regret = zeros(nTSteps + 1, 1); % The accumulated regret at time t

15 mEmp = zeros(nArms, 1); % The empirical mean of each arm

16 maxM = max(m); % The highest mean of all the arms

17

18 n = zeros(nArms, 1); % The number of times that each arm has ...

been played

19

20 % Play the arm with the highest q i
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21 ∆Sqrd = (stdDev.ˆ2 / variance 0); % ∆ˆ2 = sigma sˆ2 / sigma 0ˆ2

22 K = sqrt(2*pi*exp(1)); % Tunable parameter for ...

inverse CDF

23

24 for k = 2 : (nTSteps + 1)

25 % Choose the arm. q i is the highest value that arm i can have

26 miu t = (∆Sqrd .* miu 0 + n .* mEmp) ./ (∆Sqrd + n);

27 variance t = (stdDev.ˆ2) ./ (∆Sqrd + n);

28 % Use the inverse cdf of the standard Gaussian random variable

29 invGaussian = norminv((1 − 1/K/(k − 1)) , 0, 1);

30 q t = miu t + sqrt(variance t) .* invGaussian;

31 [¬, arm] = max(q t);

32

33 % Play the arm and update data

34 arms(k − 1) = arm;

35 sample = normrnd(m(arm), stdDev(arm));

36

37 mEmp(arm) = (mEmp(arm) * n(arm) + sample) / (n(arm) + 1);

38 n(arm) = n(arm) + 1;

39 reward(k) = reward(k − 1) + sample;

40 regret(k) = regret(k − 1) + maxM − m(arm);

41 end

42

43

44 end

B.2.2 uclAvg.m

1 % Runs UCB a number of times. In each iteration the algorithm is

2 % repeated nTSteps number of times. Returns the average reward ...

and regret

3 % as functions of the number of time steps from 0, and errors ...

corresponding

54



4 % to 95% confidence intervals. noiseMag is the magnitude noise ...

that is used

5 % to corrupt the actual means into the priors.

6 % Input means and priors, matrices of means and priors of these ...

means,

7 % respectively, to be used for each trial. Each column represents ...

a mean

8 % (or prior) to perform a trial with. The matrices must have nTrials

9 % columns.

10

11 function [rewardErr, regretErr, rewardAvg, regretAvg] =...

12 uclAvg(means, stdDev, priors, variance 0, nTSteps)

13

14 [¬, nTrials] = size(means);

15

16 rewardAvg = zeros(nTSteps + 1, 1);

17 regretAvg = zeros(nTSteps + 1, 1);

18

19 % Run ucl nTrials times, with different priors and means each time.

20 reward = zeros(nTSteps + 1, nTrials);

21 regret = zeros(nTSteps + 1, nTrials);

22 for k = 1 : nTrials

23 [newReward, newRegret, ¬] = ucl(means(:, k), stdDev, ...

priors(:, k), ...

24 variance 0, nTSteps);

25 reward(:,k) = newReward;

26 regret(:,k) = newRegret;

27 rewardAvg = rewardAvg + newReward;

28 regretAvg = regretAvg + newRegret;

29 end

30

31 % Compute average.

32 rewardAvg = rewardAvg / nTrials;

33 regretAvg = regretAvg / nTrials;

34

35 % Compute error
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36 rewardErr = confInterval(reward, rewardAvg);

37 regretErr = confInterval(regret, regretAvg);

38

39 end

B.3 UCL with correlation

B.3.1 uclCorr.m

1 % Simulates a multi−armed bandit algorithm with a UCL for ...

nTSteps, with

2 % correlated priors.

3 % Returns the reward and the regret as a function of the number of

4 % time steps, starting at 0, as column vectors. Returns the ...

sequence of

5 % arms played.

6 % m is a vector representing the means of the arms, and stdDev their

7 % standard deviation. The priors are in the form of miu 0, a ...

column vector

8 % of means, and correlation matrix sigma 0.

9

10 function [reward, regret, arms] = uclCorr(m, stdDev, miu 0, ...

sigma 0, nTSteps)

11

12 [nArms, ¬] = size(m);

13 arms = zeros(nTSteps, 1);

14

15 reward = zeros(nTSteps + 1, 1); % The accumulated reward at time t

16 regret = zeros(nTSteps + 1, 1); % The accumulated regret at time t

17 mEmp = zeros(nArms, 1); % The empirical mean of each arm

18 maxM = max(m); % The highest mean of all the arms

19

20 n = zeros(nArms, 1); % The number of times that each arm has ...

been played
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21

22 % Play the arm with the highest q i

23 K = sqrt(2*pi*exp(1)); % Tunable parameter for ...

inverse CDF

24 lambda = inv(sigma 0);

25 miu = miu 0;

26 variance t = diag(sigma 0);

27

28 for k = 2 : (nTSteps + 1)

29 % Choose the arm. q i is the highest value that arm i can have

30 % Use the inverse cdf of the standard Gaussian random variable

31 invGaussian = norminv((1 − 1/K/(k − 1)) , 0, 1);

32 q t = miu + sqrt(variance t) .* invGaussian;

33 [¬, arm] = max(q t);

34

35 % Play the arm and update data

36 arms(k − 1) = arm;

37 r = normrnd(m(arm), stdDev);

38

39 mEmp(arm) = (mEmp(arm) * n(arm) + r) / (n(arm) + 1);

40 n(arm) = n(arm) + 1;

41 reward(k) = reward(k − 1) + r;

42 regret(k) = regret(k − 1) + maxM − m(arm);

43

44 % Update belief state

45 phi = zeros(nArms, 1);

46 phi(arm, 1) = 1;

47 q = r * phi / stdDevˆ2 + lambda * miu;

48 lambda = phi * (phi') / stdDevˆ2 + lambda;

49 sigma t = inv(lambda);

50 miu = sigma t * q;

51

52 variance t = diag(sigma t);

53 end

54

55

57



56 end

B.3.2 uclCorrAvg.m

1 % Runs UCL with correlated priors for a number of times.

2 % In each iteration the algorithm is repeated nTSteps number of ...

times.

3 % Returns the average reward and regret as functions of the ...

number of time

4 % steps starting from 0, and error bars corresponding to 95% ...

confidence

5 % intervals. noiseMag is the magnitude noise

6 % that is used to corrupt the actual means into the priors.

7 % Input means and priors, matrices of means and priors of these ...

means,

8 % respectively, to be used for each trial. Each column represents ...

a mean

9 % (or prior) to perform a trial with. The matrices must have nTrials

10 % columns.

11

12

13 function [rewardErr, regretErr, rewardAvg, regretAvg] =...

14 uclCorrAvg(means, stdDev, priors, sigma 0, nTSteps)

15

16 [¬, nTrials] = size(means);

17

18 rewardAvg = zeros(nTSteps + 1, 1);

19 regretAvg = zeros(nTSteps + 1, 1);

20

21 % Run ucl nTrials times, with different priors and means each time.

22 reward = zeros(nTSteps + 1, nTrials);

23 regret = zeros(nTSteps + 1, nTrials);

24 for k = 1 : nTrials
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25 [newReward, newRegret, ¬] = uclCorr(means(:, k), stdDev, ...

priors(:, k),...

26 sigma 0, nTSteps);

27 reward(:,k) = newReward;

28 regret(:,k) = newRegret;

29 rewardAvg = rewardAvg + newReward;

30 regretAvg = regretAvg + newRegret;

31 end

32

33 % Compute average.

34 rewardAvg = rewardAvg / nTrials;

35 regretAvg = regretAvg / nTrials;

36

37 % Compute error

38 rewardErr = confInterval(reward, rewardAvg);

39 regretErr = confInterval(regret, regretAvg);

40

41 end

B.4 1D Arm Study

B.4.1 corrArms1D.m

1 % Generates the means and covariance matrix corresponding to a 1D

2 % discretized line, with nArms arms, dScale as the length scale ...

(assuming

3 % the distance between any two consecutive arms is 1), variance 0 ...

is the

4 % variance of the arms (related to the confidence of the priors), and

5 % randVar the variance of the reward means generated with respect ...

to one

6 % another. mean is the mean that the rewards will have

7
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8 function [m, sigma 0] = corrArms1D(nArms, dScale, variance 0, ...

randVar,...

9 mean)

10

11 dUnit = 1; % Length between two consecutive arms

12

13 % Step 1: Generate covariance matrix

14 sigma 0 = zeros(nArms, nArms);

15 for k1 = 1 : nArms

16 for k2 = 1 : nArms

17 if k1 ̸= k2

18 sigma 0(k1, k2) = exp(−abs(k1 − k2) * dUnit / dScale);

19 else

20 sigma 0(k1, k2) = 1;

21 end

22 end

23 end

24

25 % Step 2: Generate correlated means

26 R = normrnd(0, sqrt(randVar), nArms, 1);

27 Q = (chol(sigma 0))';

28 m = mean + Q*R; % rewards

29

30 % Step 3: Scale the correlation matrix

31 sigma 0 = sigma 0 * variance 0;

32

33 end

B.4.2 uclPriorComp.m

1 % Compares specific priors and a "master mean" for UCL with/without

2 % correlation with UCB, where the means are correlated using the ...

length

3 % scale given in dScale.
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4 % Each algorithm is ran nTrials number of times, for nTSteps time ...

steps.

5 % Plots the average regret of all five conditions.

6

7 function uclPriorComp(nTSteps, nTrials, nArms, dScale)

8

9 MAX STDDEV = 30; % The maximum standard deviation

10 stdDev = MAX STDDEV; % Standard deviation

11 stdDevV = MAX STDDEV * ones(nArms, 1); % Standard deviation vector

12

13 % Parameters for good/bad priors with appropriate/high confidence

14 lowNoise = 20;

15 highNoise = 50;

16 lowVariance = 400;

17 highVariance = 1e6;

18

19 % Parameters for 1D arms

20 randVar = 625;

21 mean = 75;

22

23 % Generate means and priors

24 means = zeros(nArms, nTrials);

25 goodPriorsMM = 75 * ones(nArms, nTrials);

26 goodPriors = zeros(nArms, nTrials);

27 [¬, sigma 0] = corrArms1D(nArms, dScale, lowVariance, randVar, mean);

28 for k = 1 : nTrials

29 [means(:, k), ¬] = corrArms1D(nArms, dScale, lowVariance, ...

randVar, mean);

30 goodPriors(:, k) = means(:, k) + lowNoise * randn(nArms, 1);

31 end

32

33 % UCB

34 [¬, rErrUCB, ¬, regretUCB] = ucbAvg(means, stdDevV, nTSteps);

35

36 % UCL without correlation. Good priors and high confidence
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37 [¬, rErrGH, ¬, regretGH] = uclAvg(means, stdDevV, goodPriors, ...

lowVariance, ...

38 nTSteps);

39

40 % UCL without correlation. Master mean prior

41 [¬, rErrGHMM, ¬, regretGHMM] = uclAvg(means, stdDevV, ...

goodPriorsMM, lowVariance, ...

42 nTSteps);

43

44 % UCL with correlation. Good priors and high confidence

45 [¬, rErrCOR, ¬, regretCOR] = uclCorrAvg(means, stdDev, ...

goodPriors, sigma 0, ...

46 nTSteps);

47

48 % UCL with correlation. Master mean prior

49 [¬, rErrCORMM, ¬, regretCORMM] = uclCorrAvg(means, stdDev, ...

goodPriorsMM, sigma 0, ...

50 nTSteps);

51

52 n = linspace(0, nTSteps, nTSteps + 1);

53

54 figure(1)

55 purple = [0.4940 0.1840 0.5560];

56 shadedErrorBar(n, regretUCB, rErrUCB, ...

{'color','b','Linewidth',0.2,'DisplayName','UCB'},1);

57 hold on

58 shadedErrorBar(n, regretGH, rErrGH, ...

{'color','r','Linewidth',0.2,'DisplayName','UCL − Specific ...

Priors'},1);

59 hold on

60 shadedErrorBar(n, regretCOR, rErrCOR, ...

{'color','y','Linewidth',0.2,'DisplayName','UCL with ...

Correlation, Spec. Priors'},1);

61 hold on

62 shadedErrorBar(n, regretGHMM, rErrGHMM, ...

{'color',purple,'Linewidth',0.2,'DisplayName','UCL − Master ...
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mean'},1);

63 hold on

64 shadedErrorBar(n, regretCORMM, rErrCORMM, ...

{'color','g','Linewidth',0.2,'DisplayName','UCL with ...

Correlation, Master mean'},1);

65 legend show;

66 xlabel('Number of time steps');

67 ylabel('Average regret');

68 title('Average regret vs. number of time steps for 1D correlated ...

priors');

69 hold off

70

71 end

B.5 2D Scale Study

B.5.1 corrRewards.m

1 % Generates the means and correlation matrix corresponding to ...

arms with

2 % coordinates given by the vectors x, y, and z. Uses dScale as ...

the length

3 % scale, variance 0 is the variance of the arms (related to the ...

confidence

4 % of the priors), and randVar the variance of the reward means ...

generated

5 % with respect to one another. mean is the mean that the rewards ...

will have.

6

7 function [m, sigma 0] = corrRewards(x, y, z, dScale, variance 0, ...

randVar,...

8 mean)

9

10 nArms = length(x);
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11

12 % Step 1: Generate covariance matrix

13 sigma 0 = zeros(nArms, nArms);

14 for k1 = 1 : nArms

15 for k2 = 1 : nArms

16 if k1 ̸= k2

17 distance = sqrt([x(k1) − x(k2)]ˆ2 + [y(k1) − y(k2)]ˆ2 ...

+ ...

18 + [z(k1) − z(k2)]ˆ2);

19 sigma 0(k1, k2) = exp(−distance / dScale);

20 else

21 sigma 0(k1, k2) = 1;

22 end

23 end

24 end

25

26 % Step 2: Generate correlated means

27 R = normrnd(0, sqrt(randVar), nArms, 1);

28 Q = (chol(sigma 0))';

29 m = mean + Q*R; % rewards

30

31 % Step 3: Scale the correlation matrix

32 sigma 0 = sigma 0 * variance 0;

33

34 end

B.5.2 discretePoints.m

1 % Generates discrete points of the tank. The grid has an edge ...

specified by

2 % "edge". Outputs x, y, and z, vector coordinates of each point.

3

4 function [x, y, z] = discretePoints(edge)

5
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6 radius = 3.2; % Radius of the tank

7 height = 2.4; % Height of the tank

8 clearance = 0.5; % Minimum clearance from the edge of the tank

9 maxRadius = radius − clearance; % Max radius for a point

10

11 numUnits = floor(maxRadius/edge); % Number of points along an ...

axis radius

12

13 zCoord = 2;

14

15 x = [];

16 y = [];

17 z = [];

18

19 for k1 = −numUnits : numUnits

20 for k2 = −numUnits : numUnits

21 xCoord = k1 * edge;

22 yCoord = k2 * edge;

23 if (sqrt(xCoordˆ2 + yCoordˆ2) ≤ maxRadius)

24 x(end + 1) = xCoord;

25 y(end + 1) = yCoord;

26 z(end + 1) = zCoord;

27 end

28 end

29 end

30

31 figure(1)

32 scatter(x, y)

33

34 end

B.5.3 distanceTraveled.m
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1 % Calculates the total distance traveled during an MAB search, in ...

terms of

2 % time

3

4 function distances = distanceTraveled(x, y, z, arms)

5

6 nTSteps = length(arms);

7

8 distances = zeros(nTSteps + 1, 1);

9

10 for k = 1 : (nTSteps − 1)

11 distance = sqrt([x(arms(k)) − x(arms(k + 1))]ˆ2 + ...

12 [y(arms(k)) − y(arms(k + 1))]ˆ2 + ...

13 [z(arms(k)) − z(arms(k + 1))]ˆ2);

14 distances(k + 2) = distances(k + 1) + distance;

15 end

16

17 end

B.5.4 tankUcbAvg.m

1 % Extends the functionality of ucbAvg by generating the average ...

distance

2 % traveled.

3

4 function [rewardErr, regretErr, rewardAvg, regretAvg, ...

distanceAvg, distErr] =...

5 tankUcbAvg(x, y, z, means, stdDev, nTSteps)

6

7 [¬, nTrials] = size(means);

8

9 rewardAvg = zeros(nTSteps + 1, 1);

10 regretAvg = zeros(nTSteps + 1, 1);

11
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12 distanceAvg = zeros(nTSteps + 1, 1);

13

14 % Run ucb nTrials times with different means each time.

15 reward = zeros(nTSteps + 1, nTrials);

16 regret = zeros(nTSteps + 1, nTrials);

17 distance = zeros(nTSteps + 1, nTrials);

18 for k = 1 : nTrials

19 [newReward, newRegret, arms] = ucb(means(:, k), stdDev, nTSteps);

20 reward(:,k) = newReward;

21 regret(:,k) = newRegret;

22 rewardAvg = rewardAvg + newReward;

23 regretAvg = regretAvg + newRegret;

24

25 % Calculate distance

26 newDistance = distanceTraveled(x, y, z, arms);

27 distance(:, k) = newDistance;

28 distanceAvg = distanceAvg + newDistance;

29 end

30

31 % Compute average.

32 rewardAvg = rewardAvg / nTrials;

33 regretAvg = regretAvg / nTrials;

34 distanceAvg = distanceAvg / nTrials;

35

36 % Compute error

37 rewardErr = confInterval(reward, rewardAvg);

38 regretErr = confInterval(regret, regretAvg);

39 distErr = confInterval(distance, distanceAvg);

40

41 end

B.5.5 tankUclAvg.m
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1 % Extends the functionality of uclAvg by generating the average ...

distance

2 % traveled.

3

4 function [rewardErr, regretErr, rewardAvg, regretAvg, ...

distanceAvg, distErr] =...

5 tankUclAvg(x, y, z, means, stdDev, priors, variance 0, nTSteps)

6

7 [¬, nTrials] = size(means);

8

9 rewardAvg = zeros(nTSteps + 1, 1);

10 regretAvg = zeros(nTSteps + 1, 1);

11

12 distanceAvg = zeros(nTSteps + 1, 1);

13

14 % Run ucl nTrials times, with different priors and means each time.

15 reward = zeros(nTSteps + 1, nTrials);

16 regret = zeros(nTSteps + 1, nTrials);

17 distance = zeros(nTSteps + 1, nTrials);

18 for k = 1 : nTrials

19 [newReward, newRegret, arms] = ucl(means(:, k), stdDev, ...

priors(:, k), ...

20 variance 0, nTSteps);

21 reward(:,k) = newReward;

22 regret(:,k) = newRegret;

23 rewardAvg = rewardAvg + newReward;

24 regretAvg = regretAvg + newRegret;

25

26 % Calculate distance

27 newDistance = distanceTraveled(x, y, z, arms);

28 distance(:, k) = newDistance;

29 distanceAvg = distanceAvg + newDistance;

30 end

31

32 % Compute average.

33 rewardAvg = rewardAvg / nTrials;
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34 regretAvg = regretAvg / nTrials;

35 distanceAvg = distanceAvg / nTrials;

36

37 % Compute error

38 rewardErr = confInterval(reward, rewardAvg);

39 regretErr = confInterval(regret, regretAvg);

40 distErr = confInterval(distance, distanceAvg);

41

42 end

B.5.6 tankUclCorrAvg.m

1 % Extends the functionality of tankUclAvg by generating the ...

average distance

2 % traveled.

3

4 function [rewardErr, regretErr, rewardAvg, regretAvg, ...

distanceAvg, distErr] =...

5 tankUclCorrAvg(x, y, z, means, stdDev, priors, sigma 0, nTSteps)

6

7 [¬, nTrials] = size(means);

8

9 rewardAvg = zeros(nTSteps + 1, 1);

10 regretAvg = zeros(nTSteps + 1, 1);

11

12 distanceAvg = zeros(nTSteps + 1, 1);

13

14 % Run ucl nTrials times, with different priors and means each time.

15 reward = zeros(nTSteps + 1, nTrials);

16 regret = zeros(nTSteps + 1, nTrials);

17 distance = zeros(nTSteps + 1, nTrials);

18 for k = 1 : nTrials

19 [newReward, newRegret, arms] = uclCorr(means(:, k), stdDev, ...

priors(:, k),...

69



20 sigma 0, nTSteps);

21 reward(:,k) = newReward;

22 regret(:,k) = newRegret;

23 rewardAvg = rewardAvg + newReward;

24 regretAvg = regretAvg + newRegret;

25

26 % Calculate distance

27 newDistance = distanceTraveled(x, y, z, arms);

28 distance(:, k) = newDistance;

29 distanceAvg = distanceAvg + newDistance;

30 end

31

32 % Compute average.

33 rewardAvg = rewardAvg / nTrials;

34 regretAvg = regretAvg / nTrials;

35 distanceAvg = distanceAvg / nTrials;

36

37 % Compute error

38 rewardErr = confInterval(reward, rewardAvg);

39 regretErr = confInterval(regret, regretAvg);

40 distErr = confInterval(distance, distanceAvg);

41

42 end

B.5.7 uclSStudy2D.m

1 % Simulates robotic search in 2D in the tank for nTSteps using ...

nTrials, for

2 % UCL with correlation using three length scale priors: 1, 5, and ...

25. Uses

3 % dScale as the length scale of the field.

4

5 function uclSStudy2D(nTSteps, nTrials, dScale)

6
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7 MAX STDDEV = 30; % The maximum standard deviation

8 stdDev = MAX STDDEV; % Standard deviation

9

10 % Parameters for good/bad priors with low/high confidence

11 lowNoise = 20;

12 highNoise = 50;

13 lowVariance = 400;

14 highVariance = 1e6;

15

16 % Parameters for 1D arms

17 randVar = 625;

18 mean = 75;

19

20 % Scale parameters

21 smallD = 1;

22 midD = 5;

23 bigD = 25;

24

25

26 % Discretize the tank and generate the rewards

27 [x, y, z] = discretePoints(0.8);

28 nArms = length(x);

29 means = zeros(nArms, nTrials);

30 goodPriors = zeros(nArms, nTrials);

31 goodPriorsMM = 75 * ones(nArms, nTrials);

32 for k = 1 : nTrials

33 [means(:, k), ¬] = corrRewards(x, y, z, dScale, lowVariance, ...

randVar, mean);

34 goodPriors(:, k) = means(:, k) + lowNoise * randn(nArms, 1);

35 end

36

37

38 stdDevV = MAX STDDEV * ones(nArms, 1); % Standard deviation vector

39

40 % Generate covariance matrices for study
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41 [¬, sigma0Small] = corrRewards(x, y, z, smallD, lowVariance, ...

randVar, mean);

42 [¬, sigma0Mid] = corrRewards(x, y, z, midD, lowVariance, randVar, ...

mean);

43 [¬, sigma0Big] = corrRewards(x, y, z, bigD, lowVariance, randVar, ...

mean);

44

45 % UCB

46 [¬, rErrUCB, ¬, regretUCB, dUCB, dErrUCB] = tankUcbAvg(x, y, z, ...

means, stdDevV, nTSteps);

47

48 % UCL without correlation. Good priors and high confidence

49 [¬, rErrGH, ¬, regretGH, dGH, dErrGH] = tankUclAvg(x, y, z, ...

means, stdDevV, goodPriors, ...

50 lowVariance, nTSteps);

51

52 % UCL with correlation. Good priors and high confidence. 3 ...

different length

53 % scales.

54 [¬, rErrCorS, ¬, regretCorS, dCorS, dErrCorS] = tankUclCorrAvg(x, ...

y, z, means, stdDev, ...

55 goodPriorsMM, sigma0Small, ...

nTSteps);

56 [¬, rErrCorM, ¬, regretCorM, dCorM, dErrCorM] = tankUclCorrAvg(x, ...

y, z, means, stdDev, ...

57 goodPriorsMM, sigma0Mid, ...

nTSteps);

58 [¬, rErrCorB, ¬, regretCorB, dCorB, dErrCorB] = tankUclCorrAvg(x, ...

y, z, means, stdDev, ...

59 goodPriorsMM, sigma0Big, ...

nTSteps);

60

61 n = linspace(0, nTSteps, nTSteps + 1);

62

63 % Plot regret

64 figure(1)
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65 purple = [0.4940 0.1840 0.5560];

66 shadedErrorBar(n, regretUCB, rErrUCB, ...

{'color','b','Linewidth',0.2,'DisplayName','UCB'},1);

67 hold on

68 shadedErrorBar(n, regretGH, rErrGH, ...

{'color','r','Linewidth',0.2,'DisplayName','UCL'},1);

69 hold on

70 shadedErrorBar(n, regretCorS, rErrCorS, ...

{'color','y','Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 1'},1);

71 hold on

72 shadedErrorBar(n, regretCorM, rErrCorM, ...

{'color',purple,'Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 5'},1);

73 hold on

74 shadedErrorBar(n, regretCorB, rErrCorB, ...

{'color','g','Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 25'},1);

75 hold on

76 legend show;

77 xlabel('Number of time steps');

78 ylabel('Average regret');

79 title('Average regret vs. number of time steps for 2D correlated ...

priors');

80 hold off

81

82 % Plot distances

83 figure(2)

84 purple = [0.4940 0.1840 0.5560];

85 shadedErrorBar(n, dUCB, dErrUCB, ...

{'color','b','Linewidth',0.2,'DisplayName','UCB'},1);

86 hold on

87 shadedErrorBar(n, dGH, dErrGH, ...

{'color','r','Linewidth',0.2,'DisplayName','UCL'},1);

88 hold on
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89 shadedErrorBar(n, dCorS, dErrCorS, ...

{'color','y','Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 1'},1);

90 hold on

91 shadedErrorBar(n, dCorM, dErrCorM, ...

{'color',purple,'Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 5'},1);

92 hold on

93 shadedErrorBar(n, dCorB, dErrCorB, ...

{'color','g','Linewidth',0.2,'DisplayName','UCL with ...

Correlation − \lambda = 25'},1);

94 hold on

95 legend show;

96 xlabel('Number of time steps');

97 ylabel('Average distance traveled (m)');

98 title('Average distance traveled vs. number of time steps for 2D ...

correlated priors');

99 hold off

100

101 end

B.5.8 uclSuperSStudy2D.m

1 % Generates curves of regret and distance traveled vs. length ...

scale, for

2 % nTSteps and using nTrials.

3 function uclSuperSStudy2D(nTSteps, nTrials, dScale)

4

5 MAX STDDEV = 30; % The maximum standard deviation

6 stdDev = MAX STDDEV; % Standard deviation

7

8 % Parameters for good/bad priors with low/high confidence

9 lowNoise = 20;

10 highNoise = 50;
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11 lowVariance = 400;

12 highVariance = 1e6;

13

14 % Parameters for 1D arms

15 randVar = 625;

16 mean = 75;

17

18 % Scale parameters

19 factor = dScale / 5;

20

21

22 % Generate a set of length scales to try

23 scales = factor * [1 3 5 10 15 20 25 30 35 40 60 80 100 125 150 ...

175 200];

24 nScales = length(scales);

25

26 % Regrets and distances plus their errors

27 regret = zeros(nScales, 1);

28 rErr = zeros(nScales, 1);

29 distance = zeros(nScales, 1);

30 dErr = zeros(nScales, 1);

31

32 % Discretize the tank and generate the rewards

33 [x, y, z] = discretePoints(0.8);

34 nArms = length(x);

35 means = zeros(nArms, nTrials);

36 goodPriors = zeros(nArms, nTrials);

37 goodPriorsMM = 75 * ones(nArms, nTrials);

38 for k = 1 : nTrials

39 [means(:, k), ¬] = corrRewards(x, y, z, dScale, lowVariance, ...

randVar, mean);

40 end

41

42 for k = 1 : nScales

43 [¬, sigma0Dist] = corrRewards(x, y, z, scales(k), ...

lowVariance, randVar, mean);
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44 [¬, rErrScale, ¬, regretCorScale, dCorScale, dErrCorScale] = ...

45 tankUclCorrAvg(x, y, z, means, stdDev, goodPriorsMM, ...

sigma0Dist, nTSteps);

46 regret(k) = regretCorScale(nTSteps + 1)

47 rErr(k) = rErrScale(nTSteps + 1)

48 distance(k) = dCorScale(nTSteps + 1)

49 dErr(k) = dErrCorScale(nTSteps + 1)

50 end

51

52 %%

53 figure(1)

54 errorbar(scales, regret, rErr)

55 title('Accumulated Regret vs. \lambda')

56 xlabel('\lambda (m)')

57 ylabel('Regret')

58

59 figure(2)

60 errorbar(scales, distance, dErr)

61 title('Distance traveled vs. \lambda')

62 xlabel('\lambda (m)')

63 ylabel('Total distance traveled (m)')

64

65 save('SuperStudy', 'regret', 'rErr', 'distance', 'dErr', 'scales');

66

67

68 end

B.6 Experimental Study

B.6.1 makeGrid.m

1 % Makes a matrix that can be used in conjunction with a color ...

plot to
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2 % display the distribution of the values in "values". Assumes the ...

grid has

3 % sides of length "edge"

4

5 function grid = makeGrid(x, y, z, values, edge)

6

7 radius = 3.2; % Radius of the tank

8 clearance = 0.5; % Minimum clearance from the edge of the tank

9 maxRadius = radius − clearance; % Max radius for a point

10 numUnits = floor(maxRadius/edge); % Number of points along an ...

axis radius

11

12 grid = zeros(2*numUnits + 1);

13

14 minValue = min(values);

15

16 valueIndex = 1;

17 for k1 = −numUnits : numUnits

18 for k2 = −numUnits : numUnits

19 xCoord = k1 * edge;

20 yCoord = k2 * edge;

21 if (sqrt(xCoordˆ2 + yCoordˆ2) ≤ maxRadius)

22 grid(k2 + numUnits + 1, k1 + numUnits + 1) = ...

values(valueIndex);

23 valueIndex = valueIndex + 1;

24 else

25 grid(k2 + numUnits + 1, k1 + numUnits + 1) = minValue;

26 end

27 end

28 end

29

30 end

B.6.2 robotScaleStudy.m
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1 % Runs a 2D scale study 1 time for the number of steps indicated ...

by nTSteps

2 % using the length scale indicated by dScale.

3

4 function robotScaleStudy(nTSteps, dScale)

5

6 MAX STDDEV = 30; % The maximum standard deviation

7 stdDev = MAX STDDEV; % Standard deviation

8

9 % Parameters for good/bad priors with low/high confidence

10 lowNoise = 20;

11 highNoise = 50;

12 lowVariance = 400;

13 highVariance = 1e6;

14

15 % Parameters for means

16 randVar = 625;

17 mean = 75;

18

19 % Scale parameters

20 factor = 5;

21 midD = dScale;

22 smallD = midD/factor;

23 bigD = midD * factor;

24

25 % Tank parameters

26 edge = 0.8; % Edge of the point grid

27 radius = 3.2; % Radius of the tank

28 clearance = 0.5; % Minimum clearance from the edge of the tank

29 maxRadius = radius − clearance; % Max radius for a point

30

31 % Discretize the tank and generate the rewards

32 [x, y, z] = discretePoints(edge);

33 nArms = length(x);
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34 [means, ¬] = corrRewards(x, y, z, dScale, lowVariance, randVar, ...

mean);

35 goodPriors = means + lowNoise * randn(nArms, 1);

36 goodPriorsMM = 75 * ones(nArms, 1);

37

38 stdDevV = MAX STDDEV * ones(nArms, 1); % Standard deviation vector

39

40 % Generate covariance matrices for study

41 [¬, sigma0Small] = corrRewards(x, y, z, smallD, lowVariance, ...

randVar, mean);

42 [¬, sigma0Mid] = corrRewards(x, y, z, midD, lowVariance, randVar, ...

mean);

43 [¬, sigma0Big] = corrRewards(x, y, z, bigD, lowVariance, randVar, ...

mean);

44

45 % UCB

46 [¬, regretUCB, armsUCB] = ucb(means, stdDevV, nTSteps);

47

48 % UCL without correlation. Good priors and high confidence

49 [¬, regretGH, armsGH] = ucl(means, stdDevV, goodPriors, ...

lowVariance, ...

50 nTSteps);

51

52 % UCL with correlation. Good priors and high confidence. 3 ...

different length

53 % scales.

54 [¬, regretCorS, armsCorS] = uclCorr(means, stdDev, goodPriorsMM, ...

sigma0Small, ...

55 nTSteps);

56 [¬, regretCorM, armsCorM] = uclCorr(means, stdDev, goodPriorsMM, ...

sigma0Mid, ...

57 nTSteps);

58 [¬, regretCorB, armsCorB] = uclCorr(means, stdDev, goodPriorsMM, ...

sigma0Big, ...

59 nTSteps);

60
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61 % Calculate distances traveled

62 dUCB = distanceTraveled(x, y, z, armsUCB);

63 dGH = distanceTraveled(x, y, z, armsGH);

64 dCorS = distanceTraveled(x, y, z, armsCorS);

65 dCorM = distanceTraveled(x, y, z, armsCorM);

66 dCorB = distanceTraveled(x, y, z, armsCorB);

67

68 % Calculate times that each point was visited

69 visitsUCB = timesVisited(x, y, z, armsUCB);

70 visitsGH = timesVisited(x, y, z, armsGH);

71 visitsCorS = timesVisited(x, y, z, armsCorS);

72 visitsCorM = timesVisited(x, y, z, armsCorM);

73 visitsCorB = timesVisited(x, y, z, armsCorB);

74 gridVisUCB = makeGrid(x, y, z, visitsUCB, edge);

75 gridVisGH = makeGrid(x, y, z, visitsGH, edge);

76 gridVisCorS = makeGrid(x, y, z, visitsCorS, edge);

77 gridVisCorM = makeGrid(x, y, z, visitsCorM, edge);

78 gridVisCorB = makeGrid(x, y, z, visitsCorB, edge);

79

80 n = linspace(0, nTSteps, nTSteps + 1);

81

82 % Plot regret

83 figure(1)

84 plot(n, regretUCB, n, regretGH, n, regretCorS, n, regretCorM, n, ...

regretCorB);

85 xlabel('Number of time steps');

86 ylabel('Regret');

87 title('Regret vs. number of time steps for robot search');

88 legend('UCB', 'UCL, Good Priors, high confidence', ...

89 'UCL, \lambda = 1', 'UCL, \lambda = 5',...

90 'UCL, \lambda = 25');

91

92 % Plot distance traveled

93 figure(2)

94 plot(n, dUCB, n, dGH, n, dCorS, n, dCorM, n, dCorB);

95 xlabel('Number of time steps');
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96 ylabel('Distance traveled (m)');

97 title('Distance traveled vs. number of time steps for robot search');

98 legend('UCB', 'UCL, Good Priors, high confidence', ...

99 'UCL, \lambda = 1', 'UCL, \lambda = 5',...

100 'UCL, \lambda = 25');

101

102 % Plot resource field vs. frequency of visits per point

103 areaLims = [−maxRadius maxRadius];

104

105 figure(3)

106 % Reward

107 subplot(3, 2, 1);

108 resourceGrid = makeGrid(x, y, z, means, edge);

109 imagesc(areaLims, areaLims, resourceGrid)

110 colormap jet

111 c = colorbar;

112 set(gca,'YDir','normal')

113 c.Label.String = 'Reward';

114 title('Resource field')

115 xlabel('x(m)')

116 ylabel('y(m)')

117

118 % Visit plots

119 subplot(3, 2, 2);

120 imagesc(areaLims, areaLims, gridVisUCB)

121 colormap jet

122 c = colorbar;

123 set(gca,'YDir','normal')

124 c.Label.String = 'Number of visits';

125 title('Number of visits, UCB')

126 xlabel('x(m)')

127 ylabel('y(m)')

128

129 subplot(3, 2, 3);

130 imagesc(areaLims, areaLims, gridVisGH)

131 colormap jet
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132 c = colorbar;

133 set(gca,'YDir','normal')

134 c.Label.String = 'Number of visits';

135 title('Number of visits, UCL')

136 xlabel('x(m)')

137 ylabel('y(m)')

138

139 subplot(3, 2, 4);

140 imagesc(areaLims, areaLims, gridVisCorS)

141 colormap jet

142 c = colorbar;

143 set(gca,'YDir','normal')

144 c.Label.String = 'Number of visits';

145 title('Number of visits, UCL, \lambda = 1')

146 xlabel('x(m)')

147 ylabel('y(m)')

148

149 subplot(3, 2, 5);

150 imagesc(areaLims, areaLims, gridVisCorM)

151 colormap jet

152 c = colorbar;

153 set(gca,'YDir','normal')

154 c.Label.String = 'Number of visits';

155 title('Number of visits, UCL, \lambda = 5')

156 xlabel('x(m)')

157 ylabel('y(m)')

158

159 subplot(3, 2, 6);

160 imagesc(areaLims, areaLims, gridVisCorB)

161 colormap jet

162 c = colorbar;

163 set(gca,'YDir','normal')

164 c.Label.String = 'Number of visits';

165 title('Number of visits, UCL, \lambda = 25')

166 xlabel('x(m)')

167 ylabel('y(m)')
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168

169 % Export to a workspace for robot execution

170 arms = armsUCB;

171 save('UCB', 'x', 'y', 'z', 'arms', 'regretUCB', 'gridVisUCB', ...

'dUCB');

172 arms = armsGH;

173 save('UCL', 'x', 'y', 'z', 'arms', 'regretGH', 'gridVisGH', 'dGH');

174 arms = armsCorS;

175 save('UCLCorS', 'x', 'y', 'z', 'arms', 'regretCorS', ...

'gridVisCorS', 'dCorS');

176 arms = armsCorM;

177 save('UCLCorM', 'x', 'y', 'z', 'arms', 'regretCorM', ...

'gridVisCorM', 'dCorM');

178 arms = armsCorB;

179 save('UCLCorB', 'x', 'y', 'z', 'arms', 'regretCorB', ...

'gridVisCorB', 'dCorB');

180 % Save run data

181 save('RunData', 'edge', 'means', 'resourceGrid', 'dScale', ...

'midD', 'bigD', 'smallD');

182

183

184 end

B.6.3 timesVisited.m

1 % Calculates the total number of times that each point was ...

visited in an

2 % MAB task

3

4 function visits = timesVisited(x, y, z, arms)

5

6 nTSteps = length(arms);

7

8 nArms = length(x);
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9

10 visits = zeros(nArms, 1);

11

12 for k = 1 : nTSteps

13 arm = arms(k);

14 visits(arm) = visits(arm) + 1;

15 end

16

17 end

B.7 Vehicle Control

B.7.1 vertStepDemo.m

1 % Simulates a step response using the vertical controller for the ...

robot

2

3 d = 0.1;

4 m = 7.5;

5 b = 16.89;

6 Kp = 600;

7 Ki = 25;

8 Plant = tf([d], [m b 0]);

9 Controller = tf([Kp Ki], [1 0]);

10

11 System = Plant * Controller / (1 + Plant * Controller);

12

13 step(System)

14 ylabel('z − z(0) (m)')

15 title('')

B.7.2 visitor.m
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1 % Runs "visit" control law, for the locations specified in filename.

2 % Warning: must clear all variables before running

3

4 function visitor(filename)

5

6 n robots = 1; % number of robots being used. Must agree with ...

ROS code

7

8 % set up the coordinates to visit

9 % xCoord, yCoord, and zCoord are vectors containing the ...

coordinates of each

10 % of the points

11 % arms: a vector indicating the sequence of points to visit

12

13 global x y z arms;

14 load(filename);

15

16 % set up the robot object

17 clear m

18 initial poses(1,:) = [0 0 0 0];

19 runtime = 10000;

20 m = Belugas(initial poses, @visit, 'direct', runtime, 'sim', false);

21 m.connect

22

23 %% send the control command

24

25 m.enable control;

26 pause;

27

28 %% stop the vehicles

29

30 m.stop

31

32 %% shut down

33
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34 m.shutdown

35

36 end

B.7.3 visit.m

1 function [ commands ] = visit(t, states)

2 % Visits a set of points in space. Developed by Peter Landgren, ...

adapted by

3 % Jonathan Valverde Lizano.

4

5 %PI control with integral contol based on robot heading

6

7 % Due to the global variables being used, must remember to clear ...

u t before

8 % running.

9

10 % Notes: −Currently ignoring spin from top propeller

11 % −Not calculating ErrorSum (Integral of distance to ...

destination)

12 % −Not keeping a history of commands

13

14 % u t: a vector containing the times per run of control

15 % IntZValue: Integral of height with respect to destination

16 % IntRValue: Integral of horizontal distance to destination

17 % stepNumber: Index of waypoints being reached

18 % atOuter: Boolean vector that, for each robot, indicates ...

whether the

19 % previous iteration of the control was in the outer ...

part of the

20 % circle around the destination

21 global u t IntZValue IntRValue stepNumber atOuter;

22

23 % x, y, and z are vectors containing the coordinates of each
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24 % of the points

25 % arms: arms(s, r) is the index of the sth arm that is played by ...

the rth

26 % robot

27 global x y z arms;

28

29 % Has the simulation finished?

30 global isFinished;

31

32 % Logs of run

33 global posLog tLog tInit tFinal;

34

35 n robots = size(states, 1);

36 commands = zeros(n robots,3);

37

38 %Control Gains

39 k d alpha = 100; %Set alpha porportional gain value

40 k d r = 100; %Set radius proportional gain value

41 k d z = 600; %Set vertical propostional gain value

42 k i r = 10; %Set radius integral gain value

43 k i z = 25; %Set height (z) integral gain value

44

45 % Radius to switch to inner controller

46 R inner = .75;

47

48 % Max inputs

49 u horizontal max = 256;

50 u vertical max = 256;

51 omega max = 1.0;

52

53 % Have all the robots reached their waypoints?

54 allDestReached = true;

55 rDest = 0.15; % Radius at which a robot has reached its destination

56

57 if numel(u t) == 0

58 stepNumber = 1;
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59 end

60

61 for robot = 1 : n robots

62 % Check for state estimate errors

63 if isequal(size(states),[0,0])

64 commands(robot,:) = [0 0 0];

65 disp('State estimator error if statement entered');

66 return;

67 end

68

69 %% −−−−−−−−−−−− STAGE 1: Determine WAYPOINT (Destination) ...

−−−−−−−−−−−−

70 % Change of waypoint

71 if numel(u t) == 0

72 atOuter(robot) = true;

73 IntRValue(robot) = 0;

74 IntZValue(robot) = 0;

75 end

76

77 destIndex = arms(stepNumber, robot);

78

79 waypoint = [x(destIndex) y(destIndex) z(destIndex)];

80

81 %% −−−−−−−−−−−−−−−−− STAGE 2: Position Calculations ...

−−−−−−−−−−−−−−−−−−

82 state = states(robot,:);

83 x ∆ = state(1) − waypoint(1);

84 y ∆ = state(2) − waypoint(2);

85 r = sqrt(x ∆ˆ2+y ∆ˆ2);

86 dz = waypoint(3)−state(3);

87

88 % Has destination been reached?

89 if r > rDest

90 allDestReached = false;

91 end

92
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93 %Calculating alpha

94 a = atan(x ∆ / y ∆);

95 if y ∆ ≥0

96 alpha = pi/2 + a + state(6);

97 if abs(alpha) > pi

98 alpha = alpha − 2*pi;

99 end

100 elseif y ∆ < 0

101 alpha = −pi/2 + a + state(6);

102 if abs(alpha) > pi

103 alpha = alpha + 2*pi;

104 end

105 else

106 disp('Error: setting alpha, no half entered');

107 alpha = 0;

108 end

109 if abs(alpha)>pi

110 disp('Error: alpha outside anticipated range');

111 end

112

113 %% −−−−−−−−−−−−−−−− STAGE 3: Calculate Vertical input ...

−−−−−−−−−−−−−−−−

114

115 % Calculate input needed to correct for height

116 u vertical proportional = k d z * dz;

117 if numel(u t) ̸= 0

118 % Calculate z integral

119 IntZValue(robot) = IntZValue(robot) + (t−u t(end))*dz;

120 end

121

122 u vertical integral = k i z * IntZValue(robot);

123 u vertical = u vertical proportional + u vertical integral;

124

125 % Check if input exceeds max

126 if abs(u vertical) > u vertical max

127 u vertical = u vertical max * sign(u vertical);
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128 end

129

130 %% −−−−−−−− STAGE 4: Calculate Inputs for Horizontal Position ...

−−−−−−−−

131

132 % −−−−−−−−−−−−− Outer Control −−−−−−−−−−−−−

133

134 if r ≥ R inner

135 atOuter(robot) = true;

136

137 u tangential alpha = k d alpha * alpha; %Set u tangential

138 u tangential = u tangential alpha;

139 if abs(alpha) ≤ pi/2;

140 u parallel proportional = k d r * r * cos(alpha);

141 else

142 u parallel proportional = 0;

143 end

144 u parallel = u parallel proportional;

145

146 u final = sqrt(u parallelˆ2+u tangentialˆ2);

147 if u parallel ̸= 0;

148 omega = atan(u tangential / u parallel);

149 else

150 omega = pi/2 * sign(u tangential);

151 end

152

153 % −−−−−−−−−−−−− Inner Control −−−−−−−−−−−−−

154 else

155 % In case the robot leaves the inner radius

156 if (atOuter(robot))

157 IntRValue(robot) = 0;

158 end

159 atOuter(robot) = false;

160

161 alpha inner = alpha;

162 if abs(alpha inner) > pi/2
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163 alpha inner = ...

(pi/2−(abs(alpha inner)−pi/2))*sign(alpha inner);

164 end

165

166 if numel(u t) ̸= 0 %Radius integral control

167 %Calculate radius integral control

168 IntRValue(robot) = IntRValue(robot) + ...

(t−u t(end))*(r*cos(alpha));

169 end

170

171

172 u parallel proportional = k d r * r * cos(alpha);

173 u parallel integral = k i r * IntRValue(robot);

174 u parallel = u parallel proportional + u parallel integral;

175 u tangential alpha = k d alpha*alpha inner;

176 u tangential = u tangential alpha;

177

178 u final = sqrt(u parallelˆ2+u tangentialˆ2) * ...

sign(u parallel);

179 omega = atan(u tangential / u parallel);

180 if abs(alpha) > pi/2

181 omega = omega * −1;

182 end

183 end

184

185 % Check if input exceeds max

186 if abs(u final) > u horizontal max

187 u final = u horizontal max * sign(u final);

188 disp('Max u horizontal exceeded');

189 end

190

191 %Normalize omega to 0−abs(omega max)

192 omega = omega / (pi/2) * omega max;

193

194 % Correct for small r

195 if r ≤ .15
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196

197 u final = u final / .15 * r;

198 end

199

200 %% −−−−−−−−−−−−−−−−−− STAGE 5: Send control command ...

−−−−−−−−−−−−−−−−−−

201 command = [u final omega u vertical];

202 if isFinished

203 command = [0 0 0];

204 end

205 commands(robot,:) = command;

206

207 %% −−−−−−−−−−−−−−−−−− STAGE 6: Update logs ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−

208 if stepNumber > 1

209 posLog(end + 1, :) = [state(1) state(2) state(3)];

210 end

211 end

212

213 u t(end+1) = t;

214

215

216 %% Update logs

217 if stepNumber > 1

218 tLog(end + 1) = t;

219 end

220

221 %% −−−−−− Change of waypoint if all robots have reached ...

destinations −−−−−−

222 totSteps = size(arms, 1);

223 if allDestReached

224 if stepNumber == totSteps

225 tFinal = t;

226 isFinished = true;

227 disp('Execution completed');

228 else
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229 if stepNumber == 1

230 tInit = t;

231 end

232 stepNumber = stepNumber + 1;

233 for robot = 1 : n robots

234 atOuter(robot) = true;

235 IntRValue(robot) = 0;

236 IntZValue(robot) = 0;

237 end

238 end

239 end

240

241 end

B.8 Miscellaneous

B.8.1 confInterval.m

1 % Computes error bar for a random variable x

2

3 function [error] = confInterval(x, xAvg)

4

5 CONFIDENCE = 0.95;

6

7 [¬, nTrials] = size(x);

8

9 sumError = 0;

10 for k = 1 : nTrials

11 sumError = sumError + (xAvg − x(:, k)).ˆ2 / nTrials;

12 end

13

14 error = sqrt(sumError) / sqrt(nTrials) * CONFIDENCE;

15

16 end
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B.8.2 fieldVisualizer.m

1 % Generates fields using different length scales and visualizes them

2 function fieldVisualizer

3

4 % Parameters for good/bad priors with low/high confidence

5 lowVariance = 400;

6

7 % Parameters for means

8 randVar = 625;

9 mean = 75;

10

11 % Length scales

12 dTiny = 1e−3;

13 dMid = 0.2;

14 dMore = 0.8;

15 dHuge = 1e3;

16

17 % Tank parameters

18 edge = 0.1; % Edge of the point grid

19 radius = 3.2; % Radius of the tank

20 clearance = 0.5; % Minimum clearance from the edge of the tank

21 maxRadius = radius − clearance; % Max radius for a point

22

23 % Discretize the tank and generate the rewards

24 [x, y, z] = discretePoints(edge);

25 [mTiny, ¬] = corrRewards(x, y, z, dTiny, lowVariance, randVar, mean);

26 [mMid, ¬] = corrRewards(x, y, z, dMid, lowVariance, randVar, mean);

27 [mMore, ¬] = corrRewards(x, y, z, dMore, lowVariance, randVar, mean);

28 [mHuge, ¬] = corrRewards(x, y, z, dHuge, lowVariance, randVar, mean);

29

30 % Make nice grids to plot these resource fields in
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31 gridTiny = makeGrid(x, y, z, mTiny, edge);

32 gridMid = makeGrid(x, y, z, mMid, edge);

33 gridMore = makeGrid(x, y, z, mMore, edge);

34 gridHuge = makeGrid(x, y, z, mHuge, edge);

35

36 % Plot resource fields

37 areaLims = [−maxRadius maxRadius];

38

39 subplot(2, 2, 1);

40 imagesc(areaLims, areaLims, gridTiny)

41 colormap jet

42 c = colorbar;

43 set(gca,'YDir','normal')

44 c.Label.String = 'Reward';

45 title('Resource field, \lambdaˆ* = 10ˆ{−3}')

46 xlabel('x(m)')

47 ylabel('y(m)')

48

49 subplot(2, 2, 2);

50 imagesc(areaLims, areaLims, gridMid)

51 colormap jet

52 c = colorbar;

53 set(gca,'YDir','normal')

54 c.Label.String = 'Reward';

55 title('Resource field, \lambdaˆ* = 0.2')

56 xlabel('x(m)')

57 ylabel('y(m)')

58

59

60 subplot(2, 2, 3);

61 imagesc(areaLims, areaLims, gridMore)

62 colormap jet

63 c = colorbar;

64 set(gca,'YDir','normal')

65 c.Label.String = 'Reward';

66 title('Resource field, \lambdaˆ* = 0.8')
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67 xlabel('x(m)')

68 ylabel('y(m)')

69

70

71 subplot(2, 2, 4);

72 imagesc(areaLims, areaLims, gridHuge)

73 colormap jet

74 c = colorbar;

75 set(gca,'YDir','normal')

76 c.Label.String = 'Reward';

77 title('Resource field, \lambdaˆ* = 10ˆ3')

78 xlabel('x(m)')

79 ylabel('y(m)')

80

81

82

83 end
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