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1 Introduction

In this paper, we pose the problem of maximizing user engagement with advertisements in a social
network. The problem framework we propose is inspired by social networks, such as Instagram and
Twitter, in which a few users are followed by a large number of users. These heavily-followed users
are often called influencers: someone (or something) with the power to affect the buying habits or
quantifiable actions of others by uploading some form of original—often sponsored—content to
social media platforms like Instagram, YouTube, Snapchat or other online channels.

If we consider the social network as a directed graph, with edges going from one user to another if the
latter follows the former, then high-degree nodes are highly valuable. In the case that an influencer
engages with an ad and purchases a product, the influencer may recommend the product to their
followers. Therefore, many more users become exposed to the product, increasing the likelihood it
will be purchased. While showing an ad to an influencer has a high potential reward, there is also a
high risk. There may be limited chances of exploring with high-influence nodes because there are
higher stakes when showing an ad to a celebrity.

Realistically, ads might only be shown to influencers at the same or lower rate than normal users.
Moreover, there is a higher cost to exploring (choosing potentially sub-optimal ads) with an influencer
than with a non-influencer, as showing an unsuccessful ad to an influencer entails a missed opportunity
of reaching a large number of users with a single ad interaction. In contrast, follower nodes are more
abundant and cheaper to explore with.

These follower nodes have another key advantage: they can provide valuable insight into the interests
of the influencer they follow. The collective interests of the set of users that follow an influencer
likely reflect the interests of the influencer. Therefore, there is a benefit to explore the users that
follow an influencer: there is a lower cost to show them an ad that does not result in user engagement,
and if we sample enough of them, we can get information about which ads might successfully interact
with the influencer. This scenario motivates our work.

In our paper, we model the problem of maximizing user engagement with advertisements in a social
network as a multi-armed bandit (MAB) problem. Multi-armed bandits are a simple and powerful
framework where algorithms are used to make decisions over time under uncertainty [7]. The
multi-armed bandit problem seeks to find the optimal action, or allocation of resources, over a set of
possible actions in a way to maximize expected gain. The difficulty in this problem lies in the fact
that the set of actions have partially, or completely, unknown properties (related to the expected gain)
which only become better understood after repeatedly selecting them.



In a scenario like online advertising, we might have to choose from na actions, or arms, for each
user in a social network. These might be ads to show to each user. We can then formulate a multi-
armed bandit, where over tend time steps we must identify the best ads to show to each user. More
importantly, we explore the setting in which we must gain observations and information from any
related follower nodes to better select ads for an influencer node. The complete formulation of our
multi-armed bandit, as well as the detailed description of our setting, is described further on in Section
3.

2 Related Work

2.1 Multi-Armed Bandits and Advertisement

Many advertising campaigns face the dilemma of exploring different ads versus exploiting the ads
that perform best. The exploration-exploitation nature of advertisements makes it a prime candidate
to apply MABs to solve. As a result, there are multiple papers which study MABs within an
advertisement setting [1, 6, 10].

In the work of [6], a similar problem to ours is formulated. Within this paper, a firm is trying to
select which group of ads should be shown on a set of websites in order to maximize the total number
of customers acquired from ad impressions. To do so, a batched [4] and hierarchical [11] MAB is
formulated to allocate an optimal proportion of the available impressions on each ad within each
website in each decision period. In each period, the firm is able to make different allocations of
impressions of the ads on the websites.

Within [10], ad selection is also modeled as a MAB problem. Specifically, they aim to best match on-
line advertiser bids to available advertising inventory on a demand-side platform. In this complicated
and real-time bidding scheme, [10] develop a dynamic contextual MAB. The authors construct a
MAB formulation that is dynamic to changes in the conversion rate of each arm (important within the
real time bidding environment), can model the overlapping of arms (allowing samples to no longer be
i.i.d), and will incorporate delayed feedback present in the testing environment.

A similar setting of advertising systems embedded within an online social network is considered in
[1]. Closely related to our work, [1] models an MAB which incorporates observations of neighboring
nodes’ rewards for an action taken by the current node. These neighboring node observations are
known as side observations. Within our work, we utilize a variation of side observations. If an action
is taken for a current node which results in a reward (a click of the ad), then all neighboring nodes are
displayed this ad (amounting to a simultaneous free pull of the arm for each neighboring node). The
work in [1] is the closest application of a MAB to a setting like our own, and directly leads into the
other area of literature we have studied: graph multi-armed bandits.

2.2 Graph Multi-Armed Bandits

There have been multiple papers exploring the incorporation of graph structures within bandit
problems, and a comprehensive survey is given in [9]. We will follow this survey roughly in this
section. It categorizes the use of graphs within bandits to achieve three different goals: smooth
rewards, modelling of side observations, and posing influence maximization problems.

As explained in [9], when modelling smooth rewards, the arms usually correspond to nodes in a
graph. The rewards then vary smoothly as a function of how the nodes are connected. In targeted
advertisements, the graph represents a social network structure, and the problem is to find a group
of users interested in a product. In recommender systems, the graph might represent the similarity
between products, and the problem is to recommend products to a given user. The work in [5]
is closely related to our framework. In that setting, the users are partitioned into clusters that are
unknown to the learner. Users within a cluster yield similar rewards for a given arm.

With regards to modeling of side observations, the scenario involves, for an arm pull, observing not
only the reward from that arm pull, but the rewards of related arms as well. In a graph, this can
be querying a node in a graph and obtaining information about the node and its neighbors node.
Applications to recommender systems can model similarity between different items to recommend
to a user [9]. Note that this framework is not immediately applicable to our problem, because our
arms correspond to ads, which do not reveal information about one another. In our case, since pulling
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an arm for a user reveals rewards about similar users, this is more similar to the smooth rewards in
graphs scenario.

A variation on side observations is networked bandits, proposed in [3] and also studied in [8]. This
is similar to the case of side observations, except that the arm pulls from the node neighbors count
towards the total reward, and are not just considered observations. These are also called side rewards
[8]. Note that this can change which arm yields the optimal expected reward, compared to the case of
side observations. This scenario resembles the problem we are posing more closely, except that, in
general, work has focused on the case in which the rewards obtained from the neighbors are not a
function from the reward obtained from the original node (in our case, a click from an influencer is
needed to obtain arm pulls from the followers).

In [3], the authors consider the nodes to correspond to arms and pose the problem as a contextual
bandit, where a context vector represents the user features and the features of the ad or message to be
shown. Playing an arm, which amounts to choosing a user to show an ad to, gives the reward of that
user and of all neighboring users. Nonetheless, the authors do not impose a constraint on showing ads
to users with high in-degrees, which differs from our setting (in a simple case with one central user
and a high number of followers, ads would only get shown to the central user, because they result
in the highest possible number of clicks, but we argue that we cannot spam high-degree nodes with
sub-optimal ads). Furthermore, the authors assume that the expected reward for an ad shown to a
user is linear in a context vector. In spite of these differences from our setting, it might be possible to
adapt their algorithm by posing our problem as a contextual bandit and incorporating the constraints
or costs for choosing high-degree nodes. Such an adaptation will be left for future work.

Finally, influence maximization deals with selecting nodes in a graph structure that can optimally
propagate some sort of information (e.g. a product) throughout a network [9]. Such a scenario is
similar to our framework, except that we consider the problem of choosing actions for the nodes
instead of node selection. Moreover, we place restrictions on showing ads to high-in-degree nodes.
Our problem involves, for different users, executing different exploration/exploitation strategies and
identifying different optimal arms.

3 Problem Formulation

3.1 General Framework

Consider a directed graph G with nu users, with an edge set E, where edges represent a user following
another user. There are na ads, which correspond to the bandit’s arms. We enumerate the users and
ads for notational convenience. When the ith user is presented with the jth ad, the user will click on
the ad with a fixed, but hidden, probability pi,j (the click-through probability, CTR). A reward of
1 is received if the user clicks, and 0 otherwise. Moreover, if the user clicks on the ad, then all of
the user’s followers will be exposed to the ad and click with a probability given by their individual
CTRs. An additional reward of 1 is gained for any new clicks. In other words, we simulate a pull of
the jth arm on all of the ith user’s followers if user i clicks. However, we will assume that this chain
of clicks stops at the ith user’s followers (this assumption could be relaxed in future work).

Furthermore, for the jth ad, we assume the CTR probability function p∗,j has some degree of
smoothness in terms of the arrangement of nodes on the graph. This can be simulated in different
ways, such as generating random pi,j values with a correlation structure based on the graph, with
close nodes having high correlation in their pi,j values. Alternatively, the CTR probability functions
might be defined around a few high-degree nodes in the graph, such that the CTRs of a follower are
based on the CTRs of who they follow, plus some noise.

At each time step, we show an ad to a user with the goal of obtaining the maximum cumulative
expected reward. We assume that there is some limitation on showing ads to high-in-degree nodes,
such as a cost proportional to the in-degree of the nodes or a schedule that limits how often a high-in-
degree node can get shown an ad. The agent might or might not have control over which user gets
chosen at a given time step.

Note that this general formulation is very open-ended and can result in different variants of the
problem. Our goal is to study this framework by starting with a specific, simplified instance of
this problem. Future work could focus on relaxing these simplified assumptions to solve more
complicated versions of the problem.
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3.2 Problem Simplification: Star Network

To the best of our knowledge, this problem has not been studied in such a formulation. Although
similar scenarios have been studied, as presented in Section 2.2, we have not seen authors address the
problems of (1) availability of side rewards being dependent on the outcome of the arm pull from the
queried node and (2) limited ability of exploration with high-degree nodes. Therefore, we will first
study a simplified scenario consisting of a single influencer node connected to nf “follower" nodes.
The edges are directed from the influencer to his followers.

We will enforce smoothness in the CTR probabilities by assuming that, for any ad j, the CTR of
follower i for that same ad is generated by adding random noise ϵi,j to the CTR probability of the
influencer.

Furthermore, we will limit how often an ad can be shown to the influencer by creating a schedule
based on epochs. At each epoch, the followers are shuffled. The agent chooses an ad for each of these
followers, and at the end of the epoch, the agent is able to show an ad to the influencer. The goal is to
maximize the expected reward across all epochs.

4 Algorithms

A solution to the problem presented in Section 3.2 should: (1) exploit the similarity of the reward
distributions between the followers and the influencer while (2) trying to avoid bias in the empirical
estimates of the arm rewards. These requirements are somewhat at odds with each other. For the first
requirement, we might want to pool together observations from all of the followers. After all, if the
mean rewards of the followers are close to one another, it would be wasteful to not take into account
the observations from the other followers. We could then use these to estimate the mean rewards of
the influencer. However, if we consolidate all reward observations into a single empirical estimate for
all users, and we try to use it as an approximation of the mean rewards of some given follower, the
estimate will most likely be biased, because it will not necessarily converge to the mean rewards of
that given follower. In other words, for a given action, the mean reward across all users will most
likely be different than the mean reward of that action for any given single user.

We therefore propose two algorithms, each prioritizing one of these objectives. The first algorithm,
UCB User-Wise (UCB-UW), keeps a separate UCB instance for each user. The second algorithm,
UCB Centralized (UCB-Cent), pools all of the follower observations into a single empirical estimate
for all of the follower’s rewards. We further discuss these algorithms in the following sections.
UCB-UW will have unbiased estimates of the rewards, at the cost of additional arm exploration,
while UCB-Cent should explore more efficiently, at the cost of having biased arm reward estimates.

Before introducing these algorithms, we present some notation common to them. We let the followers
be labeled 1 through nf . The influencer (central user) will have an index of 0. Let x̄ia and oia be the
empirical mean reward estimate and the number of observations, respectively, for action a and user i.
These will both count instances in which user i is presented with action a by means of the influencer
(a successful arm pull of action a on the influencer).

4.1 UCB-UW

This algorithm is a slight modification of UCB-SO [1]. We outline the steps in Algorithm 1. The
main idea is to have one UCB instance per each user. The most notable difference with respect to
traditional UCB is that, upon a successful arm pull from a user, the results of the arm pulls of its
followers are recorded and used to update the empirical means of the rewards for that action for
the followers. While the algorithm in [1] is similar, we make changes to reflect that (1) rewards for
followers are obtained only upon a successful arm pull and (2) we follow the user sampling schedule
we have defined in Section 3.2. Note that, when an arm has not been pulled for a given user, its UCB
bound is infinite, so all arms must be sampled at least once for all users. This would likely not be
practical in the setting of online advertisement, especially if we want to avoid suboptimal ad choices
for the influencer, but the algorithm provides a useful benchmark nonetheless.
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Algorithm 1: UCB-UW
INPUT: tend, arms, users
for t = 1, ..., tend do

u← shuffle ({1, ..., nf})
for i = u1, ..., unf

do
a = argmaxa x̄ia +

√
log(t)
oia

Sample action a for user i and obtain reward r
Update x̄ia and oia based on r

end

a = argmaxa x̄0a +
√

log(t)
o0a

Sample action a for user 0 and obtain reward r
Update x̄0a and o0a based on r
if r > 0 then

for i = 1, ..., nf do
Sample action a for user i and obtain reward r
Update x̄ia and oia based on r

end
end

end

4.2 UCB-Cent

The main idea behind UCB-Cent, shown in Algorithm 2, is to keep a single UCB instance for all of
the followers, since the reward profiles for them are similar. Let x̄fa and ofa be the empirical mean
reward and the number of observations for action a across all followers. Actions are chosen for the
followers by using UCB based on x̄fa and ofa. Note the use of ttot, the running number of total arm
plays across all followers, instead of t in the UCB term for the followers.

As discussed at the beginning of Section 4, the estimates x̄fa do not actually reflect the mean reward
for action a for any of the given followers, because their mean rewards for a are all (likely) different.
This could mean that, for any given follower, we could converge to a suboptimal action. However,
these centralized estimates are a straightforward way to incorporate the smoothness prior into our
estimates, while allowing us to experiment with how well we can infer the influencer mean rewards.

For the influencer, we use one of two strategies, specified as the algorithm "mode": GreedyInf or
UCBInf. Both are based on the motivation of behind the problem we posed, to try to infer the
influencer preferences based on the behavior of the followers. For GreedyInf (Greedy Influencer), we
pick the arm with the highest empirical mean estimates pooled from all of the followers, x̄fa. For
UCBInf (UCB Influencer), we use a UCB algorithm, with the empirical reward estimate approximated
from the pooled estimate from the followers: x̄fa + nf x̄

2
fa. This is chosen because, if the true CTR

for the influencer is p, and we approximate the followers as having exactly the same CTR (with no
noise), then the expected value for the arm pull is (1−p)×0+p(1+nfp) = p+nfp

2. We introduce
this UCB strategy for the influencer to encourage some exploration and help reduce possible bias
effects (introduced by using the estimates x̄fa to approximate the arm CTRs of the influencer).

It is possible to use several other strategies to choose the influencer’s arm. We could incorporate
the empirical reward estimates from the followers, and then correct the estimate once sufficient
observations from the influencer become available. This could give us both faster convergence
towards optimal arms while removing some of the bias in the estimates. A similar strategy could
be used for the followers. Another approach might incorporate the smoothness of the rewards by
computing a loss based on the squared differences between the reward estimates of neighboring nodes
and using it to regularize the estimates. Such a loss is used in spectral clustering [9] and has been
incorporated for linear graph bandits by [2]. We leave such exploration of methods incorporating
smoothness into the observation updates for future work, but UCB-Cent provides us with a way
to measure the value of using the follower observations to try to infer, as quickly as possible, the
influencer preferences.
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Algorithm 2: UCB-Cent
INPUT: tend, arms, users, mode
ttot = 1
for t = 1, ..., tend do

u← shuffle ({1, ..., nf})
for i = u1, ..., unf

do
a = argmaxa x̄fa +

√
log(ttot)

ofa

Sample action a for user i and obtain reward r
Update x̄fa and ofa based on r
ttot = ttot + 1

end
if mode = GreedyInf then

a = argmaxa x̄fa

end
else if mode = UCBInf then

a = argmaxa x̄fa + nf x̄
2
fa +

√
log(ttot)

ofa

end
Sample action a for user 0 and obtain reward r
if r > 0 then

for i = 1, ..., nf do
Sample action a for user i and obtain reward r
Update x̄fa and ofa based on r

end
end

end

4.3 Epsilon-Greedy LP

Another algorithm that we test to solve the problem presented in Section 3.2 is the Epsilon-Greedy
LP presented in [1]. Similar to our problem, [1] want to find a solution to allocating advertisements in
an online social network in the presence of side observations. To accomplish this, a Greedy-Epsilon
algorithm is introduced which allows “exploration for each user at a rate proportional to her network
position" [1]. This algorithm utilizes a Linear Program (LP) to first minimize the exploration between
adjacent nodes in a network. The LP is shown below in Equation (1).

min
∑
i∈N

zi (1)

subject to: Ai · z ≥ 1, ∀ i ∈ N

zi ≥ 0, ∀ i ∈ N

The variable N denotes the set of nodes (users) and Ai is the ith row of the node adjacency matrix A.
The weights zi serve the function of exploration weights for each user in the graph.

As mentioned above, one can interpret this LP as minimizing the total exploration among a node and
its neighbors. The reason to minimize exploration between adjacent nodes is that a neighbor node’s
exploration is equivalent to a node’s own exploration due to the presence of side observations. Thus,
less exploration is needed within a dense connection of nodes to gain better insight into each node’s
preferences. This is formulated as saying that at least one unit of exploration is required to be split up
between a node and its neighbors, while the total exploration weights are minimized.

The optimal solution of Equation (1) determines the units, or weights, of exploration for each node
zi. For a specific node, the weight of exploration zi plays a crucial role in how much to explore
versus how much to exploit in the Epsilon-Greedy LP shown below in Algorithm 3. Also playing a
role are the hyperparameters c and d as well as the total number of actions M and the current round
t. The hyperparameters c and d adjust how quickly the probability of exploring ϵ decays (at a rate
cM
d2t ). In our work, we choose c = 1 and d = 0.5 (close to the values set in [1]) so that ϵ begins
to decrease when t > 4M . Once the weights of exploration are known for each node, a standard
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Epsilon-Greedy method is applied with a twist: the probability of exploration for each node ϵi is
set directly proportional to the flow of exploration for a specific node zi. Thus, nodes that have a
high weight of exploration will have a relatively higher probability for exploration. This is how the
Epsilon-Greedy LP algorithm manages to create "exploration for each user at a rate proportional to
her network position" [1] as mentioned above.

In our problem formulation, the influencer node is densely connected. In fact, the only edges that
exist in our graph are between the influencer and their followers. No edges exist between followers
for our simplified problem formulation. Therefore, the solution to Equation 1 in our formulation
will result in z = (1, 0, 0, . . . , 0, 0)T . One can see this, as each follower node can shift the weight
of exploration all onto its adjacent influencer node. This makes sense, as each exploration of the
influencer will result in an exploration for each of the follower nodes. As expected, the optimal LP
solution yields the following: the network position of the influencer is quite high.

Due to the optimal solution of the LP for our simple formulation, the Epsilon-Greedy LP algorithm
will explore considerably for the influencer node and not at all for the follower nodes. This is not
what we expect to be an optimal strategy, however it is included as it will serve as an important and
interesting benchmark for us (majority exploration for the influencer, no exploration for followers).
For this algorithm, we expect to see a large amount of regret for the influencer node and lower (closer
to optimal) regret for the follower nodes. We have modified the Epsilon-Greedy LP algorithm from
[1] to fit our problem formulation, and show it in Algorithm 3.

Algorithm 3: Epsilon-Greedy-LP
INPUT: arms, users, optimal solution z∗ of LP in Equation (1), c > 0, d ∈ (0, 1)
for t = 1, ..., tend do

u← shuffle ({1, ..., nf})
for i = u1, ..., unf

do
ϵi = z∗i min(1, cM

d2t )
a = argmaxa x̄ia(t)
With probability 1− ϵi select a, else select an action uniformly at random
Obtain reward r and update x̄ia based of r

end
ϵ0 = z∗0 min(1, cM

d2t )
â = argmaxa x̄0a(t)
With probability 1− ϵ0 select â, else select an action uniformly at random
Obtain reward r and update x̄0,â

if r > 0 then
for i = 1, ..., nf do

Sample action â for user i, obtain reward r, and update x̄iâ based on r
end

end
end

5 Empirical Results

We generate an instance problem as follows. First, we generate the CTRs for the influencer by
sampling uniformly from the interval [0.1, 0.9]. Next, for each influencer, we generate uniform noise

Table 1: Full Regret Comparison
Followers UCB-UW UCB-Cent-GreedyInf UCB-Cent-UCBInf Epsilon Greedy LP

10 19,064 9,578 9,664 18,841
20 37,950 16,117 16,185 36,581
40 76,705 29,091 28,995 74,129
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Table 2: Influencer Regret Comparison
Followers UCB-UW UCB-Cent-GreedyInf UCB-Cent-UCBInf Epsilon Greedy LP

10 2,302 487 516 11,702
20 4,477 523 574 21,977
40 9,816 719 636 43,880

(a) 10 followers, full regret (b) 10 followers, influencer regret

(c) 20 followers, full regret (d) 20 followers, influencer regret

(e) 40 followers, full regret (f) 40 followers, influencer regret

Figure 1: Full regret (left) and influencer regret (right) for 10, 20, and 40 followers. Where not visible,
the UCB-Cent_GreedyInf algorithm curve is behind the UCB-UCB_Inf curve.
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in the interval [−0.1, 0.1], and add it to the influencer’s CTRs to obtain the followers’ CTRs. Finally,
we run 1, 000 episodes and compute average statistics.

For this simulation, we set the number of ads to be 100, and generate experiments with 10, 20, and 40
followers. We want to study the case of less followers than ads, because this means that finding the
optimal ad efficiently requires pooling of the observations from all followers. We use 10, 000 time
steps in our simulations (for each user), or 100 times the number of ads.

The results are shown in Figure 1. First, we plot the full regret, where we accumulate the regret for
all users for each time step (one full round of arm pulls across all users). Next, we plot the influencer
regret, defined as the regret for the influencer, computed with respect to the total reward from the
influencer and their followers.

One of the immediate takeaways from the results in Figure 1 is that the UCB-Cent algorithms greatly
outperform the UCB-UW and Epsilon Greedy LP algorithms. This is true for both the full regret
and influencer regret metrics. The UCB-Cent algorithm experiences less than half of the full regret
than the other algorithms experience for all number of followers tested. This is consistent with our
expectation that UCB-Cent more efficiently explores the ads by keeping a centralized estimate of
the ad CTRs, but it is notable that it outperformed the other algorithms in spite of its use of biased
estimates. In an infinite horizon, however, UCB-Cent might converge to slightly suboptimal arms,
resulting in linear regret (with a potentially small slope).

The difference in regret for the influencer, the most important and rewarding node in our network,
is even more stark. The regret is approximately ten times greater for UCB-UW than the UCB-Cent
algorithms. The Epsilon Greedy LP fares even worse, with regret that is approximately 40 times
worse than the UCB-Cent algorithms. From these differences, it is clear that most of the contribution
to the full regret for UCB-Cent comes from the follower nodes. When only the influencer regret is
considered, the advantage of using UCB-Cent is higher. This is consistent with our design choice of
UCB-Cent, which was to use exploration of the follower nodes to prioritize minimizing the regret
incurred with the influencer. Furthermore, the fact that there is little difference between the GreedyInf
and UCBInf variants of UCB-Cent indicates that the driving factor behind the reduction in regret is
the pooling of follower observations. Although we designed UCBInf to have less bias issues than
GreedyInf, we do not observe a significant difference in the regret incurred by both variants of the
algorithms.

We also note that, every time we double the number of followers, the full regret roughly doubles as
well for all algorithms. This also occurs with the influencer regret, except in the case of UCB-Cent.
UCB-Cent achieves smaller increases in influencer regret, with an increase of roughly 40% from 20
to 40 followers for GreedyInf, and around 10% in all other cases. Overall, the doubling of regret is to
be expected in UCB-UW and Epsilon-Greedy LP. This is because the number of individual bandit
problems is roughly doubled, and these algorithms do not use observations for one follower to update
the empirical estimates for the other followers in any way. In contrast, for UCB-Cent, doubling the
number of followers will increase the amount of information available to estimate the arm rewards
for the influencer. We expected this to result in fewer sub-optimal choices for the influencer. This can
be partially seen in the influencer regret sub-figures (the right-hand sub-figures of Figure 1), where
there is a much slower growth of regret. Note that doubling the number of followers also roughly
doubles the regret for a suboptimal arm choice in expectation, even for influencer regret. The fact
that the influencer regret does not double for UCB-Cent is an indicator that the algorithm is indeed
making less suboptimal choices by taking advantage of the increased amount of observations.

Overall, UCB-Cent incorporates the prior on the reward structure (similar rewards for all users) to
achieve a lower regret growth. Nonetheless, it is worth mentioning that the bias issues for UCB-Cent
would require a correction to avoid linear regret in a long horizon, whereas UCB-UW and Epsilon-
Greedy LP would not suffer from this issue. One option would be using UCB-UW as a warm start,
and then switching to UCB-UW or Epsilon-Greedy LP.

One particular issue that could dictate algorithm design is the trade-off between full regret and
influencer regret. When increasing the number of followers, the influencer regret grows slower
than the full regret for UCB-Cent. Furthermore, while UCB-UW and Epsilon-Greedy LP achieve
similar full regret, the influencer regret for UCB-UW is much lower. This occurs because the LP
optimized by Epsilon-Greedy LP seeks to minimize a notion of collective exploration for all nodes
while ensuring all arms get some minimum amount of exploration. The result is that the influencer is
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heavily used to explore. If we modify the problem objective to minimize exclusively the influencer
regret, it might be possible to modify the LP to achieve a lower influencer regret.

Whether full regret, influencer regret, or a weighted combination thereof should be minimized might
be a function of the problem setting, with issues such as the practical cost of suboptimal ad choices
for the influencer to be taken into consideration.

6 Conclusions

This project serves as an initial study into the problem of prioritizing regret reduction for high
influence nodes in a multi-armed bandit graph problem. While previous work in literature has
addressed some other aspects of side rewards and side observations in graph structures in bandits,
there is value in studying the setting of prioritizing few high-degree nodes, for applications such as
social networks.

Our results highlight the importance of incorporating the reward structure (i.e. the smoothness of
the rewards across the graph) into algorithms to solve this problem. Furthermore, it is clear that the
choice between full regret or the influencer regret as the problem objective dictates algorithm choices.

While our results did not show a high cost of bias in the mean reward estimates for the algorithms, this
might be because the only unbiased algorithms did not make an efficient use of the reward structure
of our problem. Where the reward structure incorporated into the algorithms does not match the true
reward structure, or where incorporating this structure introduces bias in the algorithms, there is a
possibility of not converging towards the optimal arm. The best of both worlds could entail using a
reward structure to warm start an algorithm, and using algorithms that rely on unbiased estimators
afterwards.

7 Future Work

The algorithms we studied in this project need to be significantly changed to handle more general
scenarios. The most immediate modification would be to have multiple influencers, with followers
possibly following more than one influencer. A question then becomes what is a reasonable model
for the relationship between a user’s CTRs and those from the influencers followed by the user. Here,
notions of function smoothness over graphs would be very useful, although more elaborate, realistic
models might be used depending on the application (such as social network advertisement).

We have also not studied the setting of being able to choose what followers are sampled before
sampling the influencer. An interesting problem might be to have a limited budget of arm pulls and
have the follower rewards reflect those of the influencer at different degrees. This would require
adaptively identifying the followers that provide the behavior most similar to that of the influencer,
and prioritizing sampling accordingly. Yet another possibility is to have the graph edges be weighted
by some external model of predicted similarity between followers and influencers. These might then
also inform empirical reward estimate updates and uncertainty estimates.

While we have avoided relying on the assumption of the bandit having linear rewards, some of these
settings might require incorporating such a structure. If such an assumption was incorporated, there
are existing algorithms in the literature that might be leveraged or adapted for these scenarios.
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